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cleaned from the surface through several sputtering cycles down to an approximate 

oxygen coverage equivalent to 0.2 L.23-26 All other features in repeated trials appear 

identical to those in Figure 3.11 with both the multilayer and monolayer and multilayer 

beginning to desorb around 175 K and being fully desorbed from the surface by 200 K. 

As such, a final flashing series with smaller temperature intervals of only 10 K were used 

to try and pin-point the desorption temperature and are shown in Figure 3.12. The RAIRS 

data show a slight decrease in intensity of the O-H and C-O peaks after heating to 160 K, 

significant desorption from 170 K, and total desorption by 180 K. Combining this 

information with the previous trials where methanol was observed to still be present on 

Figure 3.12 10.0 L dosing series immediately followed by a flashing series where the 
base temperature is 100 K. Done in 10 K intervals up to 200 K 
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the surface at 175 K, the RAIRS spectra suggest that methanol desorbs from the V(100) 

sample between 175 and 180 K.  

 

Section 3.5: TPD analysis of methanol on V(100) 

 The TPD spectra from dosing 5.0 L of methanol onto a V(100) surface is 

displayed in Figure 3.13, where the masses 15, 26, 28, 29, and 31 are followed.   

The desorption of CH4 (mass 15) is observed primarily at 185 K with a secondary 

evolution at 220 K. Ethylene (mass 26) was recorded to desorb at 500 K by another group 

but was not observed in our experiments, possibly due to lower signal intensity in these 

experiments compared to experiments performed by others.23-26 Even in the experiments 

Figure 3.13 TPD of methanol desorption from a V(100) surface.  
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performed by others, the signal intensity was very low. A zoomed-in portion of our m/z = 

26 spectra in the region of 450 to 550 K is depicted in Figure 3.14. 

The desorption of CO (mass 28) was observed at 180 K, though its peak is much less 

intense than other desorbed species in the region. Furthermore, it should be noted that no 

peak intensities were observed after 300 K. Furthermore, the CO desorption was shown 

in other works to be caused by background CO adsorption as opposed to methanol 

dissociation, which seems to be corroborated by this data as the peak intensity for mass 

28 seems to have no direct relationship to the amount of methanol dosed in literature.23-26 

This being said, it is a possibility that the observed CO desorption is a result of methanol 

dissociation as the only observed peak intensity falls within the same temperature range 

as the desorbed methanol. Further experimentation is needed to confirm or deny this. 

Both masses 29 and 31 (methanol) desorb from the surface at approximately 185 K with 

a less intense desorption being recorded at 210 K. The formation of other products such 

as formaldehyde (m/z = 29), carbon dioxide (m/z = 44), propylene (m/z = 42), etc., was 

determined to be unlikely after repeated profile scans of the amu range 1-100.  

Figure 3.14 Enhanced spectra showing the 450 – 550 K region of the m/z = 26 data.  
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It is believed that all recorded desorptions took place in the 185-190 K 

temperature range (n.b., the filament of the QMS was set to 70.0 eV during all 

experiments). The high voltage of the ionization filament likely is too harsh for methanol, 

causing significant fragmentation. If true, this would mean that all observed peaks are 

likely just methanol desorbing and being broken into its most commonly observed 

fragments. This idea is supported by the fact that all desorption peaks only match with the 

literature desorption peaks for methanol, but not their other respective species (e.g., m/z = 

15 could be from either CH3OH or CH4), explaining why all observed peaks fell within 

the same temperature range.  

There are a few possibilities as to why the RAIRS and TPD data report two 

different desorption temperatures. First, there was a noticeable problem with our QMS 

instrument as data points were only being collected at a rate of two to four points per 

minute, which is unreliably low for a scanning instrument and could, therefore, only 

provide approximations of when a species desorbed from the surface instead of a 

definitive temperature. Second, recalling that TPD experiments are done as a function of 

time, it should be noted that our software for electronically recording the temperature 

data and imputing it into the TPD file (Labview) was inoperable during this time. As 

such, both the ramp rate and temperature were controlled and recorded manually. While a 

steady ramp rate was achieved during the experiments, it proved to be impossible to use 

the same ramp rate across multiple experiments with the typical ramp rate varying 

between 0.21 and 0.27 K/s. The temperature was only able to be recorded in 30 second 

intervals; this temperature data was then input to create a linear function of temperature 

with respect to time. This equation would then be used to determine the temperature at a 
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certain point during the scanning process. Due to the infrequency of the temperature 

recordings, it is likely that the generated function (and also therefore the TPD data) 

remains highly inaccurate. Once the problem with the QMS and the data collection 

software is addressed, it should be a simple matter of running additional TPD 

experiments to determine if this was the source of the discrepancy. Regardless, further 

experimentation is needed both to verify the existing data for methanol on vanadium, as 

well as to collect new data for methane on vanadium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4: CONCLUSIONS 
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 A custom-built UHV chamber was constructed to provide the laboratory with 

greater experimental technique flexibility, this design is optimized to perform both 

RAIRS and TPD experiments simultaneously with a minimum obtained pressure of 1.6 x 

10-10 torr. The construction and addition of an effusive molecular beam was successful 

with trials of the device to begin in the near future. During the construction process of the 

analysis chamber, the vanadium surface was successfully characterized through 

SEM/EDX and XPS methods, revealing that oxygen and carbon from background gases 

were contaminating the surface. The RAIRS and TPD experiments documented here 

show that methanol both molecularly and dissociatively desorbs from a V(100) surface at 

the temperature ranges of 180 – 190 K and 210 – 220 K. Furthermore, it is shown that 

methanol dosing onto vanadium results in the partial oxidation of the surface into 

vanadia, though this process is reversible through sputtering and annealing cycles. 

RAIRS data has been acquired for methanol adsorbing onto V(100) with all observed 

peaks being successfully characterized.  

 The next step of this investigation would be to switch from methanol to methane. 

While both RAIRS and TPD experiments for methane will be conducted, methane will be 

dosed through the effusive molecular beam and the gas temperature will be varied. This 

will allow analysis of gas versus surface degrees of freedom. Additionally, the 

experimental data could be analyzed through transition state theory. After testing 

methanol on the V(100) surface, studies involving the same processes on the V(110) 

surface will be conducted with the results being compared to the V(100) data in order to 

further optimize the reaction pathway.  
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APPENDIX: THE HEATED DOSER 

 

This research makes use of an effusive molecular beam to dose methane onto the 

surface of the sample. Unlike supersonic molecular beams, which are non-equilibrium for 

the gas degrees of freedom, effusive molecular beams produce a gas in which the 

rotational, vibrational and translational temperatures describing the gas are all equal (i.e., 

Tg = Tr = Tv = Tt).25-27. By using a smaller orifice, the few molecules that pass through the 

hole will do so without undergoing any sort of rotationally cooling collisions with each 

other. Gas and surface temperatures can be controlled independently, allowing for 

collection of both thermal non-equilibrium and also thermal equilibrium experiments.26,27 

The dosed gas’s temperature is controlled through the heated doser itself by heating the 

dosing tube. This temperature is monitored through use of a K-type thermocouple. Once 

released out of the high-pressure doser tube behind the pinhole into the lower-pressure 

chamber, the methane retains its temperature up until it collides with the surface of the 

sample.26,27 This method of an effusive molecular beam is used in the context of CH4 

when determining the properties of methane dissociation by cross-examining the effects 

of multiple parameters. Regardless of how the gas is dosed onto the surface, the sample 

temperature can be controlled independently. Usually, this is done by resistive heating 

from wires that are spot-welded to the sides of the sample.25,27 

The heated doser will assist in obtaining a sticking coefficient for methane on a 

vanadium surface, but the backing pressure of the gas behind the heated doser’s nozzle 

must be determined. First, the experimental sticking coefficient is obtained through use of 

Equation 5.1: 
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S(Tg, Ts; ϑ) = !
!
 [ !!  !
!  !!"#  !

 – Sbkg(Tc, Ts)]   (5.1) 

which is derived in Reference 28 and has parameters explained below. 𝜗 is the angle of 

incidence. Tg is the temperature of the gas, which is assumed to be the nozzle temperature 

of the doser. Ts is the temperature of the sample’s surface. Tc is the temperature of the 

chamber walls. Θc is the percent carbon coverage in a given experiment (target range is 

5-10% as carbon coverage is expected to be proportional to the measured sticking 

coefficiant). σ is the density of surface atoms, which is calculated below. n is the number 

of carbon atoms present in the alkane; and for methane, n is simply 1. Fbkg is the 

background flux of molecules on the sample’s surface. This background flux represents 

methane molecules that collide with the chamber walls before hitting the sample. τ is the 

dosing time. R is the ratio of the direct flux, Fdir, from the effusive molecular beam that 

strikes the sample’s surface to the background flux, Fbkg. Sbkg(Tc, Ts) is the sticking 

coefficient of background gas, and S(Tg, Ts; 𝜗) is the sticking coefficient of methane. For 

these variables, the angle of incidence, 𝜗, is 0o from surface normal. Tg, can range from 

300 to 900 K, Ts can range from 100 to 1000 K, and Tc is 296 K. For these calculations 

Θc is set to be 7%, as it falls safely within the previously given range of ideal carbon 

coverage, and τ has a maximum value of 60 minutes, because surface contamination will 

be a large problem at longer experimental times. Fbkg is represented by Equation 5.2: 

    Fbkg =  !
!"!!!!!

     (5.2) 

where p is the pressure of the chamber, kB is the Boltzmann Constant, and m is the mass 

of a gas molecule. The value for p is 7.0 x 10−10 torr and m was calculated to be 2.664 x 

10−26 kg for methane. The surface atom density, σ, was calculated through Equation 5.3: 
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    σ = n!
!

!!"##
      (5.3) 

Where 𝑛! is the number of surface atoms per unit cell, A is the surface area of the 

sample, and Acell is the visible surface area of a single vanadium unit cell. 𝑛!  is 0.5 as 

vanadium adopts a bcc crystal structure, A was calculated to be 1.001 x 10−4 m2, and Acell 

was measured at 9.181 x 10−20 m2 by using available data on the dimensions of a 

vanadium unit cell. Note that we estimated only 80% of the surface sites are available, 

because of presumed background contamination, for our calculation of pn below. 

Therefore, the originally calculated σ value of 5.45 x 1014 is scaled down to 4.36 x 1014 to 

account for the 80% available surface sites. The ratio of the direct flux (Fdir) from the 

effusive molecular beam that strikes the sample’s surface to the background flux (Fbkg), R 

will be calculated through Equation 5.4:  

    R = !!"#
!!"#

 ≈ !! !"
!!!!!!!

     (5.4) 

Note that the direct calculation of Fdir to Fbkg cannot be measured and is, therefore, 

approximated, where Cc is the pumping speed in the chamber, and d is the distance from 

the sample’s surface to the nozzle of the heated doser. Cc was calculated to be 1.5 x 1010 

L/s and d was measured to be 0.0680 meters.  

These variables were then combined and used to solve for the backing pressure of the 

heated doser’s nozzle, pn, as given by Equation 5.5: 

 pn = !  !! !"!!!!!
!!  !!  !!

 x 1−   !(!!,  !!,!)!
!!!

!!
   (5.5) 

Where An is the area of the heated doser’s nozzle, which was measured to be 1.327 x 10−6 

m2 and the sticking coefficient of methane, S(Tg, Ts; 𝜗), was estimated to be 1 x 10−6 

because we suspect that will be our lower limit of detection. Solving for pn in Equation 
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5.5 yields a backing pressure of 50.6 torr. A schematic of the heated doser to be used in 

these experiments can be seen in Figure 5.1. 

 
 
 
 
  

Figure 5.1 Schematic of the heated doser where the top two images are a top-down schematic 
while the lower image presents a side view. 
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