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ABSTRACT 

Cuscuta harperi is a rare parasitic plant endemic to a small number of widely disjunct 

populations in Georgia and Alabama. It is a habitat-specialist, occurring on sandstone 

and granite outcrops within its limited range; it is also exhibits a high level of host 

specificity, parasitizing only a few select species. C. harperi is of conservation concern 

due to small population sizes and threats from habitat degradation. 

Here we develop genetic markers to address questions regarding population genetics of 

the species. We discuss the utility of microsatellites and single nucleotide 

polymorphisms as molecular markers to evaluate genetic variability between individuals 

and across populations. We also investigate patterns of host selection in populations of 

C. harperi using greenhouse and field-based experiments. 

We failed to find variation in putative microsatellite markers and conclude that methods 

of SNP detection, such as targeted sequence capture, are likely to be superior for 

identification of polymorphisms in the genome of C. harperi. We also show that host 

selection by C. harperi is a result of active choice by seedlings and that there are 

additional environmental factors contributing to patterns of host use observed in natural 

populations. Finally, we discuss the design and implementation of a project that 

combines in situ and ex situ strategies for the conservation of the species. 

Keywords: Cuscuta harperi, parasitic plant, host-parasite interaction, microsatellites, 

high-throughput targeted capture methods, sequence capture 
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STATEMENT OF INTEGRATION 

The Master of Science in Integrative Biology program at Kennesaw State University is 

designed to train biologists to think across disciplines, to ask and answer questions 

spanning organizational levels, and to acquire understanding of biological systems from 

the fine to the broad scale. For this project, we address questions regarding interactions 

between Cuscuta harperi and its host plant species and investigate a myriad of factors 

that influence those interactions, from phenological, temporal, and spatial factors to 

cellular and genetic mechanisms. We also address questions regarding genetic 

relatedness and variability between individuals and among populations. Many hours 

were spent in the field making observations and collecting data and tissue samples; 

numerous hours were also spent in the lab prepping and analyzing samples and 

developing methods and techniques.  

We included C. harperi individuals from thirteen separate populations in this study, and 

location and access of study sites required collaboration with multiple entities, including 

the US National Park Service, the Georgia Department of Natural Resources, The 

Nature Conservancy, Hancock Timber Resource Group, and private botanical 

organizations. Many study populations were located using herbarium specimen records 

maintained and made available online through the Alabama Herbarium Consortium and 

the University of West Alabama, and also through the use of GA DNR Elemental 

Occurrence Reports. Involvement of these organizations was imperative for the success 

of the project and also served to extend the project’s integrative scope. 

This thesis project is broadly integrative, encompassing field, greenhouse, and 

laboratory-based experiments and employing techniques from disciplines ranging from 

molecular and computational biology to population ecology and conservation biology. 

Completion of this project has allowed me to develop and broaden my skills and 

exercise my creativity and problem-solving as a scientist, as well as to make meaningful 

connections between diverse biological concepts. 

  



6 
 

LIST OF FIGURES AND TABLES 

Chapter 1 

Table 1.1.  Host use by population in 2015………………………………………………………..13 

Figure 1.1. Map of documented range of C. harperi and historic range of Longleaf Pine (Pinus 

palustris)……………………………………………………………………………………………….14 

Figure 1.2. Map of C. harperi range………………………………………………………………...17 

Figure 1.3. Host species key………………………………………………………………………...18 

Maps of Study Sites 

Figure 1.4. Allen/Aubrey Flatrock……………………………………………………………………19 

Figure 1.5. Bear Creek………………………………………………………………………………..20 

Figure 1.6. Chitwood Barrens………………………………………………………………………..21 

Figure 1.7. DeSoto State Park……………………………………………………………………….22 

Figure 1.8. Flat Rock………………………………………………………………………………….23 

Figure 1.9. Harrison Outcrop…………………………………………………………………………24 

Figure 1.10. Hinds Road……………………………………………………………………………...25 

Figure 1.11. Little River Canyon……………………………………………………………………..26 

Figure 1.12. LRC – Canyon View Overlook………………………………………………………...27 

Figure 1.13. LRC – Falls Overlook…………………………………………………………………..28 

Figure 1.14. LRC – Lynn Overlook…………………………………………………………………..29 

Figure 1.15. LRC – Wolf Creek Overlook…………………………………………………………...30 

Figure 1.16. Moon Rock………………………………………………………………………………31 

Figure 1.17. Moss Rock Preserve……………………………………………………………………32 

Figure 1.18. MRP – Boulder Glade…………………………………………………………………..33 

Figure 1.19. MRP – Little Glade………………………………………………………………………34 

Figure 1.20. MRP – Moon Rock Glade………………………………………………………………35 

Figure 1.21. North Fork Creek………………………………………………………………………...36 

Figure 1.22. South Texas Flatrock……………………………………………………………………37 

Figure 1.23. Town Creek Glade………………………………………………………………………38 

 

 



7 
 

Chapter 2 

Figure 2.1. Map of populations represented in microsatellite primer testing……………………42 

Figure 2.2a. Gel image illustrating invariable loci…………………………………………………..43 

Figure 2.2b. Gel image illustration variable loci…………………………………………………….43 

Table 2.1. Sequence and identification information for C. harperi primer pairs that amplified 

fragments of target size (150-450 base pairs)………………………………………………………44 

Table 2.2. C. harperi primers amplify fragments across closely related Cuscuta species……..45 

Chapter 4 

Figure 4.1. Map of sampled C. harperi populations, with Hinds Road and Harrison Outcrop 

populations indicated by stars………………………………………………………………………...53 

Figure 4.2a. Hinds Road……………………………………………………………………………….53 

Figure 4.2b. Harrison Outcrop………………………………………………………………………...54 

Figure 4.3. Pot configurations…………………………………………………………………………56 

Figure 4.4. Host pots with filter paper labeled to quadrant………………………………………...56 

Figure 4.5. Schematic representation of bench layout for greenhouse trials…………………….57 

Table 4.1. Attachment data by population…………………………………………………………...60 

Table 4.2. Establishment success by population……………………………………………………61 

Figure 4.6. Example of distance measurement method……………………………………………61 

Figure 4.7. Observed attachments by host plant……………………………………………………62 

Figure 4.8. Distribution of final quadrant location of seedling apical meristem………………….63 

Figure 4.9. Observed distribution of host selection by population………………………………...64 

Figure 4.10a/b. Photos of HO seedlings forming initial attachments to Bigelowia………………66 

Figure 4.10c/d. Photos of HO seedling prior to and forming initial attachments………………...66 

Chapter 5 

Figure 5.1. Map of host use at Lynn Overlook (LRC-LO)………………………………………….69 

Figure 5.2. Red markers indicate locations where hosts were marked on 11 May 2016 for 

survivorship study………………………………………………………………………………………70 

Chapter 6 

Figure 6.1. Map of outplanted C. harperi individuals……………………………………………….77 

Figure 6.2. Comparing Distributions of Reproductive Success – Little River Canyon-Lynn 

Overlook and Camp Meeting Rock…………………………………………………………………...79 



8 
 

TABLE OF CONTENTS 

Abstract………………………………………………………………………..2 

Acknowledgements……………………………………………...................3 

Statement of Integration………………………………………..................5 

List of Figures and Tables………………………………………………….6 

Chapters 

Chapter One: Introduction 

• Study Organism……………………………………………………...10 

• Study Sites……………………………………………………………17 

• Research Objectives………………………………………………..38 

Chapter Two: Developing Population Genetics Markers: Testing Microsatellite 

Primers 

• Introduction…………………………………………………………..40 

• Methods……………………………………………………………….41 

• Results………………………………………………………………...43 

• Discussion…………………………………………………………….45 

Chapter Three: Developing Population Genetics Markers: Targeted Sequence 

Capture 

• Introduction…………………………………………………………..47 

• Methods……………………………………………………………….48 

• Discussion…………………………………………………………….51 

Chapter Four: Host Specificity: Greenhouse Trials 

• Introduction…………………………………………………………...52 

• Methods………………………………………………………………..55 

• Results…………………………………………………………………60 

• Discussion…………………………………………………………….62 



9 
 

Chapter Five: Host Specificity: Field Survivorship Study 

• Introduction……………………………………………………………68 

• Methods………………………………………………………………...69 

• Results………………………………………………………………….70 

• Discussion……………………………………………………………..71 

Chapter Six: Cuscuta harperi Ex situ Conservation Project 

• Introduction…………………………………………………………….73 

• Methods…………………………………………………………………75 

• Results and Discussion………….…………………………………..77 

Appendices……………………………………………………………………..81 

References……………………………………………………………………...90 

  



10 
 

CHAPTER ONE: Introduction 

Study Organism 

Cuscuta is a genus of parasitic plants comprised of approximately 200 different species. 

Although traditional taxonomy placed the genus in its own family (Cuscutaceae), 

molecular phylogenies have used highly constrained chloroplast gene sequences to 

place Cuscuta within the Morning Glory Family (Convolvulaceae) (Stefanovic et al. 

2002, 2003). Close relatives of Cuscuta include plants in the genus Ipomoea, which 

includes Common Morning Glory (Ipomoea purpurea) and Sweet Potato (Ipomoea 

batatas). All Cuscuta species are annual stem parasites that never develop roots and 

whose leaves are reduced to vestigial scales. Almost all species have yellow to orange 

stems and white to greenish flowers which range from 1 to 6 mm in diameter, and many 

species are notoriously difficult to distinguish from one another due to lack of 

differences in vegetative morphology. 

Cuscuta species are classified as obligate holoparasites due to their ultimate 

dependence on their host plants for survival and completion of their life cycle, although 

some species are considered cryptically photosynthetic (McNeal et al. 2007a). Many 

photosynthetic genes, including the large subunit of Rubisco (rbcL), are present and 

under strong selection within the chloroplast genome of most Cuscuta species (McNeal 

et al. 2007a/b). However, loss of many other chloroplast genes, lack of functional 

stomates, and expression of chlorophyll often localized to developing seeds indicates 

remaining photosynthetic genes may be repurposed for efficient lipid synthesis as in 

Canola (Schwender et al. 2004), and the parasite likely obtains all required 

carbohydrates from the host plant (Hibberd et al. 1998). Like other parasitic plant 

lineages, Cuscuta species form epidermal projections known as haustoria that invade 

host tissue and connect to the vascular system (xylem and phloem) of the host for 

siphoning water, carbohydrates, and other nutrients. 

All of the nutrients and energy available to unattached Cuscuta seedlings must be 

stored in the seeds, because the seedling never exhibits root formation or 

photosynthetic ability. Seedlings must locate and successfully attach to an appropriate 
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host within days of germination in order to survive, at which point the parasite tissue 

between the ground and the host plant connection dies (Kuijt 1969). 

Cuscuta species occur worldwide, and many are capable of parasitizing multiple hosts. 

C. campestris is known to cause extensive damage to crop plants, leading to significant 

agricultural and economic losses (Kaiser et al. 2015); a number of species are classified 

as noxious weeds (USDA 2012). Multiple species are restricted or prohibited in many 

US states, and bringing plants or seeds across state lines is illegal in many cases. On 

the other hand, some Cuscuta species are found in much smaller and more restricted 

ranges and display a higher degree of host specificity. Most of these species are not 

considered agricultural pests but, instead, are more frequently of conservation concern 

due to narrow habitat and host preference. 

Some Cuscuta, especially weedy species that are considered crop pests, are 

considered generalists; they are able to successfully parasitize a broad range of host 

plants and will often grow on more than one type of plant concurrently. Species with a 

narrower host range are considered specialists, sometimes only known to parasitize 

one or two particular host species. Previous research has shown that even species that 

are considered generalists do not always use host plants proportionally to availability; 

although the parasite is capable of utilizing multiple host species in a mixed-host 

habitat, it may utilize them in a non-random pattern (Kelly et al. 1988, Kelly and Horning 

1999). One study suggests that C. campestris may exhibit selective foraging by 

reallocation of resources to ramets that are attached to more beneficial hosts. An 

example of this reallocation is increased haustorial formation on hosts supplying more 

nutrient reward and a decreased number of haustoria formed on less rewarding hosts 

when multiple hosts are being parasitized concurrently (Koch et al. 2004). In another 

study, C. europaea exhibited the ability to distinguish between potential host plants of 

varying nitrogen content prior to forming attachments and was able to selectively 

parasitize those with higher nitrogen levels (Kelly 1992). 

Although the molecular pathways that are utilized are not well-understood, there is 

substantial evidence that Cuscuta species interact with host plants using mechanisms 

of chemo-attraction and chemo-repulsion. Specifically, a Cuscuta species has been 
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shown to grow preferentially toward volatile organic compounds emitted by tomato 

plants (Lycopersicon esculentum) and away from volatiles emitted by wheat (Triticum 

aestivum) (Runyon et al. 2006). These findings are particularly significant because 

Cuscuta campestris is an agricultural pest on tomato crops but does not parasitize crop 

plants in the grass family (Poaceae). Additional research is needed to investigate 

whether similar patterns of chemotaxis are observed during foraging in other Cuscuta 

species.  

Cuscuta harperi, named for renowned southeastern U.S. botanist Roland Harper, is a 

species that is endemic to a low number of scattered populations in Georgia and 

Alabama. It is a habitat specialist that occurs only on exposed sandstone and, more 

rarely, granite outcrops and barrens in Alabama and Georgia while further displaying a 

high level of host specificity within this limited habitat. The plant is a slender vine, bright 

orange in color, with small whitish flowers about 1 mm long. It can be differentiated from 

other similar species in the genus by its primarily four-parted rather than five-parted 

flowers, its flower size, which is among the smallest of any Cuscuta species worldwide, 

and capsules that only rarely produce more than a single seed (Yuncker 1932). It is also 

known to be highly capable of self-pollination, as suggested by its reduced flower size, 

because when grown under greenhouse conditions isolated from any other individuals 

of C. harperi the flowers invariably produce seed. 

Populations of C. harperi are widely disjunct, and most populations are restricted to 

small areas. While individuals are plentiful in a few populations within the core range of 

northeast Alabama, other surveyed populations consisted of between one and ten 

individuals in 2015 (Table 1.1). The plant is assigned a legal status of endangered in 

Georgia, with four reported populations in two widely disjunct counties (GA DNR 2010). 

It has a state rank of S2 in Alabama, where most populations occur, and is assigned a 

global rank of G2/G3 (NatureServe Explorer 2015); both the state and global rankings 

indicate the species’ vulnerability to extinction based on low number of individuals 

present and threats due to habitat destruction.  
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Table 1.1.  Host use by population in 2015. Number of individuals refers to number of plants sampled. In 

the case of larger populations, n+ indicates more than the number of individuals sampled were present. 

Another potential threat to Cuscuta harperi populations is fire suppression in the 

surrounding habitat.  (NatureServe Explorer 2015). Historically, many of the rock 

outcrops where C. harperi is found would have been surrounded by Longleaf pine 

savannas and woodlands, ecosystems widely known to be dependent upon frequent 

burning as a natural disturbance regime (McPherson 1997, Platt 1999). Prior to massive 

deforestation for timber and agriculture in the early 20th century, Longleaf pine savannas 

and woodlands would have been a dominant habitat type throughout much of the 

documented range of Cuscuta harperi (Fig. 1.1).  

Population 

Name 

County Number of 

Individuals 

% using 

Bigelowia 

exclusively 

% using 

Liatris 

exclusively 

% using 

another host 

exclusively 

% using 

mixed 

hosts 

Allen/Aubrey 

Flatrock 

Heard, GA 8 0.0 87.5 12.5 0.0 

Bear Creek Marion, AL 8 0.0 87.5 12.5 0.0 

Chitwood 

Barrens 

Dekalb, AL 1 0.0 100.0 0.0 0.0 

DeSoto State 

Park 

Dekalb, AL 10 10.0 90.0 0.0 0.0 

Flat Rock Jackson, AL 9 0.0 100.0 0.0 0.0 

Harrison Outcrop Washington, 

GA 

20 95.0 0.0 0.0 5.0 

Hinds Road Etowah, AL 30+ 33.3 20.0 6.7 40.0 

Little River 

Canyon NP 

Dekalb, AL 69+ 24.6 50.7 21.7 2.9 

Moon Rock Dekalb, AL 13 92.3 0.0 0.0 7.7 

Moss Rock 

Preserve 

Jefferson, AL 24 54.2 29.2 4.2 29.2 

North Fork Creek Marion, AL 8 0.0 87.5 0.0 12.5 

South Texas 

Flatrock 

Heard, GA 6 0.0 50.0 50.0 0.0 

Town Creek Dekalb, AL 10 100.0 0.0 0.0 0.0 
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Fig. 1.1. Map of documented range of C. harperi and historic range of Longleaf Pine (Pinus palustris). 

Orange-colored counties indicate extant populations of C. harperi; population in Chambers County 

(yellow) is listed as likely extirpated. Green-colored area indicates extent of historic Longleaf pine habitat 

in Georgia and Alabama. Longleaf pine range map adapted from Little 1971; C. harperi county 

occurrence records taken from www.natureserve.org. 

Populations of C. harperi outside of the historic range of Longleaf pine habitat would 

have been embedded within Appalachian Shortleaf Pine-Xeric Oak forest, a habitat type 

which, similar to Longleaf pine dominated habitat, would have historically been a pyric 

ecosystem. Multiple plots of this habitat type are protected within Little River Canyon 

National Preserve where the core range of C. harperi occurs. Also within the preserve, 

C. harperi populations occur in close proximity to Low Mountain Seepage Bog habitat 

where populations of Sarracenia oreophila (Green pitcherplant) are found. Sarracenia 

oreophila is a federally endangered species whose decline is known to be caused in 

large part by anthropogenic fire suppression (Godt and Hamrick 1996). Both the 
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Appalachian Shortleaf Pine-Xeric Oak forest and the Low Mountain Seepage Bog 

habitat types are fire-maintained as part of management strategies within Little River 

Canyon National Preserve (Schotz et al. 2008). 

The Physical Chemistry Fire Frequency Model (PC2FM) was developed using fire 

history data combined with climate data and physical and chemical properties of North 

American ecosystems to be used as a predictor of mean fire intervals. According to the 

PC2FM, habitats within the range of C. harperi would have historically been subject to 

burning in intervals of between 2 and 8 years (Guyette et al. 2012). Within the pyric 

ecosystems that would have encompassed the range of C. harperi, the ecotones 

surrounding rock outcrops would have been the driest and most fire prone habitats.  

Without frequent fire disturbance to prevent succession, woodland species encroach on 

the outcrops until dispersal is limited by edaphic factors (Anderson et al. 1999). For 

Cuscuta harperi, whose preferred hosts often thrive along the edges of the outcrop, this 

means fewer available hosts in these areas and restriction to more isolated patches of 

vegetation on the outcrop itself. Within these isolated patches, the soil frequently 

becomes buried beneath a layer of organic matter composed predominantly of detritus, 

lichens, and mosses which can be detrimental to the germination and foraging of new 

C. harperi seedlings. Frequent fire would largely eliminate this accumulation of organic 

material and help to maintain barren, sandy soil in which C. harperi seeds could more 

readily germinate and forage, and fire may also potentially aid in scarification of the 

tough seed coat.  

The most commonly-used host plants of C. harperi are Nuttall’s Rayless Goldenrod 

(Bigelowia nuttallii) and Dwarf Blazing Star (Liatris microcephala), both in the family 

Asteraceae.  Pineweed (Hypericum gentianoides- Hypericaceae), Longleaf Sunflower 

(Helianthus longifolius- Asteraceae), Outcrop Rushfoil (Croton willdenowii- 

Euphorbiaceae), and Menges’ Fameflower (Phemeranthus mengesii- Montiaceae) are 

lesser-used hosts. Although often abundant on the same outcrops, other members of 

Asteraceae such as Showy Tickseed (Coreopsis pulchra) and Confederate Daisy 

(Helianthus porteri) are rarely utilized as hosts. Although four recently-attached C. 

harperi individuals were found on Coreopsis at Little River Canyon National Preserve 
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during field work in May 2016, no blooming individuals of C. harperi were found on 

Coreopsis at that site or elsewhere in August-October 2015. In Spring 2017, individuals 

were also found growing abundantly on Blue Toadflax (Nuttallanthus canadensis- 

Plantaginaceae) and rarely on Appalachian Stitchwort (Minuartia glabra-  

Caryophyllaceae) at Little River Canyon, although these annual, spring ephemeral hosts 

typically aren’t present on the outcrops during the late summer blooming season of C. 

harperi.   

While some of the larger populations of C. harperi use a mix of the hosts listed above, 

C. harperi parasitizes Bigelowia almost exclusively on some outcrops even though the 

other species used as hosts in the core range, including Liatris, are present and 

abundant in close proximity. A well-documented example of this host specificity can be 

seen at the type locality of C. harperi in the coastal plain region of Georgia. The species 

was first discovered by renowned botanist Roland Harper in 1906, when he found it 

parasitizing Bigelowia nuttallii on an outcrop of sandstone conglomerate known as 

Altamaha Grit in Washington County. In his details of the new Cuscuta species, Harper 

carefully noted that all of the individuals he located were exclusively using Bigelowia as 

a host; “The Cuscuta was quite plentiful, but I could not find a trace of it on any other 

host.” (Harper 1906). A Georgia DNR occurrence report from that outcrop in 1999 also 

mentions the species was observed that year occurring strictly on Bigelowia, and 

another visit to the site in 2012 by Joel McNeal and GA DNR botanist Tom Patrick once 

again found Bigelowia as the sole host at the site despite an abundance of Liatris 

microcephala in close proximity to parasitized individuals (McNeal pers. comm. 2015). 

Interestingly, while visiting the type locality in September 2015, we also found Bigelowia 

used as the sole host with the exception of a lone individual that was found parasitizing 

Liatris.  

In other sites, Liatris may be the most common host even where Bigelowia is readily 

available, and in C. harperi populations that exist outside of the range of Bigelowia, 

Liatris and Hypericum become the sole hosts. The host specificity observed at some 

sites may be indicative of host choice by the parasite at the seedling stage, evolution of 

resistance to parasitization by local host populations, differential survival of the parasite 
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seedlings on particular hosts due to environmental conditions, or long-term suitability of 

the host across multiple seasons since the same patch of these perennial hosts is often 

parasitized year after year. 

Study Sites 

Populations were located using Element Occurrence Records provided by GA 

Department of Natural Resources, herbarium specimens from the Alabama Plant Atlas 

(Alabama Herbarium Consortium 2016), and identifying appropriate outcrop habitat with 

Google satellite maps. From August to October 2015, we collected tissue from 208 

individuals across 12 separate populations spanning the known range of Cuscuta 

harperi. In September 2016, a 13th population was located, and tissue from 8 additional 

individuals was collected.  We recorded GPS location information for each individual 

sampled as well as which host species each sampled individual was parasitizing. 

Current availability of potential host species was documented in the field and 

corroborated using species range maps (USDA 2012). All maps were generated using 

Google Maps, 2017. 

 

Fig 1.2 Map of C. harperi range. Each marker represents one of the thirteen populations located and 

sampled in this research project. These populations span the entirety of the documented range of C. 

harperi. 
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List of Study Sites by Population 

Site maps showing the location of sampled individuals on each outcrop are color-coded 

to indicate the host species each sampled C. harperi individual was parasitizing (Fig. 

1.3). See captions for distance and area information for each study site. 

Fig. 1.3 Host Species Key 

 

  



19 
 

Allen/Aubrey Flatrock (AA), Heard County, Georgia (33.26608, -85.15032) 

Allen/Aubrey Flatrock is a granite outcrop, privately owned and accessed through 

permission from the land owner in collaboration with The Nature Conservancy, Georgia. 

Eight individuals were located and sampled at this site on 28 October 2015. All 

individuals were parasitizing Liatris microcephala, with one individual concurrently 

attached to Croton willdenowii. Individuals in this population were widely scattered 

across the expansive outcrop. Allen/Aubrey Flatrock is outside the documented range of 

Bigelowia nuttallii. 

 

Fig. 1.4. Allen/Aubrey Flatrock. Individuals span a linear distance of 966 meters. Total area of exposed 

rock outcrop is approximately 117 acres (473,482 sq. meters). 
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Bear Creek (BC), Marion County, Alabama (34.29372, -87.64619) 

The Bear Creek population is located on sandstone along the north bank of Bear Creek, 

most easily accessible by water. Eight individuals were located and sampled at this site 

on 17 September 2016. Seven out of eight individuals were parasitizing Liatris 

microcephala, and one individual was parasitizing Hypericum gentianoides. Bear Creek 

is outside the documented range of Bigelowia nuttallii. 

 

Fig. 1.5 Bear Creek. Individuals 1-7 are within a linear distance of approximately 122 meters; individual 8 

is 483 meters downstream on another area of exposed sandstone. 
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Chitwood Barrens (CB), Dekalb County, Alabama (34.41808, -85.88087) 

Chitwood Barrens Preserve is a grassy sandstone barren that is protected by the 

Nature Conservancy as a habitat for several rare plant species, including Sarracenia 

oreophila (Green Pitcherplant) and Allium speculae (Little River Canyon Onion). 

Permission to access the preserve was granted through The Nature Conservancy, 

Alabama. A single individual was located at this site on 11 September 2015, parasitizing 

Liatris microcephala. The individual was found on the opposite side of AL Hwy 44 from 

the main protected area. Other potential host plants, including Bigelowia nuttallii were 

present in some abundance, though in scattered patches surrounded by unsuitable 

hosts. 

 

Fig. 1.6 Chitwood Barrens. A single individual was located growing approximately 33.5 meters west of 

Hwy 44. 
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DeSoto State Park (DSP), Dekalb County, Alabama (34.50203, -85.61396) 

The DeSoto State Park population is located on a sandstone glade within the park 

boundaries. Ten individuals were located at this site on 9 October 2015. Nine of the ten 

individuals were parasitizing Liatris microcephala; one individual was parasitizing 

Bigelowia nuttallii.  

 

Fig 1.7 DeSoto State Park. C. harperi individuals are spread across a linear distance of 45.7 meters. 

Total exposed rock outcrop area is approximately 0.5 acres (2023.4 sq. meters). 
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Flat Rock (FR), Jackson County, Alabama (34.7696, -85.70637) 

The Flat Rock population is located on sandstone outcrop along the bank of Flat Rock 

Creek and is the northernmost population in the range of Cuscuta harperi. Nine 

individuals were located and sampled on 9 October 2015. All individuals were 

parasitizing Liatris microcephala. Flat Rock is outside the documented range of 

Bigelowia nuttallii. 

 

Fig. 1.8 Flat Rock. C. harperi individuals span a linear distance of 29 meters along the north bank of Flat 

Rock Creek. Exposed sandstone continues for approximately 107 meters on the east side of Hwy 117, 

and another expanse of rock (approximately 4450 sq. meters) is exposed on the south shore of the creek; 

however, no C. harperi individuals were located on either of these areas. 
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Harrison Outcrop (HO), Washington County, Georgia (32.87133, -82.73328) 

Harrison Outcrop, the type locality of Cuscuta harperi, is found on outcrops of Altamaha 

grit, a sandstone conglomerate. Twenty individuals were located and sampled on 26 

September 2015. Nineteen of the twenty individuals were parasitizing Bigelowia nuttallii; 

one individual was parasitizing Liatris microcephala as its primary host, with secondary 

connections to Croton willdenowii and Hypericum gentianoides. This population has 

historically been reported as exclusively parasitizing Bigelowia nuttallii, although other 

potential hosts, including Liatris microcephala, are abundant in proximity to Cuscuta 

harperi individuals. (For further discussion, see chapter 3.) 

 

Fig. 1.9 Harrison Outcrop. All individuals are within a linear distance of approximately 645 meters to the 

west of Peacock Road. Total area of exposed Altamaha grit outcrop is approximately 81.5 acres (329,819 

sq. meters). 
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Hinds Road (HR), Etowah County, Alabama (34.04753, -86.02973)  

The Hinds Road population is found on a sandstone outcrop and has one of the highest 

densities of Cuscuta harperi individuals of all thirteen populations sampled. Thirty 

individuals were sampled, which represented a fraction of individuals present. 

Individuals were found parasitizing Bigelowia nuttallii, Liatris microcephala, Croton 

willdenowii, and Hypericum gentianoides, with many individuals parasitizing multiple 

hosts concurrently. 

 

Fig. 1.10 Hinds Road. All individuals are within a linear distance of 290 meters. Total area of exposed 

sandstone outcrop is approximately 9.2 acres (37,231 sq. meters). 
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Little River Canyon (LRC), Dekalb County, Alabama 

The Little River Canyon population is divided into four subpopulations, each designated 

for its location within Little River Canyon National Preserve. Managed by the U.S. 

National Park Service, this preserve is home to many protected plant species, including 

Cuscuta harperi, Sarracenia oreophila, Allium speculae, and Phemeranthus mengesii. 

Tissue sampling and plant collections within LRCNP were done under permission of the 

U.S. National Park Service (Permit# LIRI-2015-SCI-0002). Little River Canyon includes 

the population with the highest density of individuals of Cuscuta harperi, as well as the 

widest host range of all sampled populations.  

 

Fig. 1.11 Little River Canyon. The four populations sampled within Little River Canyon National Preserve 

span 4 miles (6.44 km) along the canyon rim. 
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Canyon View Overlook (LRC-CVO) (34.36414, -85.65886) 

 The Canyon View Overlook subpopulation is located on sandstone outcrops 

along the rim of the canyon. Thirteen individuals were located and sampled on 28 

August 2015.  Three individuals were parasitizing Bigelowia nuttallii, one was 

parasitizing Hypericum gentianoides, three were parasitizing Liatris 

microcephala, five were parasitizing Helianthus longifolius, and one individual 

was parasitizing Liatris and Helianthus concurrently.   

 

Fig. 1.12 LRC-Canyon View Overlook. Individuals occur within a linear distance of approximately 152 

meters along the canyon rim.  
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Falls Overlook (LRC-FO) (34.39239, -85.62534) 

 The Falls Overlook subpopulation is located on sandstone outcrops along the rim 

of the canyon. Four individuals were located and sampled on 28 August 2015. 

Three individuals were parasitizing Liatris microcephala; one individual was 

parasitizing Phemeranthus mengesii. 

 

Fig. 1.13 LRC-Falls Overlook. These four individuals occur within a linear distance of 20 meters along the 

canyon rim. 

 

 Lynn Overlook (LRC-LO) (34.3838, -85.63078) 

 The Lynn Overlook population is located on exposed sandstone along the rim of 

the canyon and continues into an extensive glade adjacent to and contiguous 

with the overlook glade on the north side of Little River Canyon Parkway. This is 

the population with the highest density, with hundreds of individuals present on 

multiple host species. The glade to the north of the parkway is adjacent to habitat 

that is managed for Sarracenia oreophila, and, as such, is subject to periodic 



29 
 

prescribed burning. For more on fire dependency of Cuscuta harperi, see 

Introduction: Study Organism. Twenty-seven sampled individuals were 

parasitizing Liatris microcephala, ten were parasitizing Bigelowia nuttallii, four 

were parasitizing Helianthus longifolius, and one was parasitizing Croton 

willdenowii. Notably, Coreopsis pulchra, a species closely related to Bigelowia, 

Liatris, and Helianthus, is present and abundant on this glade; however, no 

individuals were observed successfully parasitizing Coreopsis during the 2015 

field season. 

 

Fig. 1.14 LRC-Lynn Overlook. The majority of individuals at this location are in the glade to the north of 

Little River Canyon Parkway within an area of approximately 7.34 acres (29,704 sq. meters). Individuals 

near the canyon rim occur within a linear distance of approximately 96 meters. 
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Wolf Creek Overlook (LRC-WCO) (34.36452, -85.66228) 

 The Wolf Creek Overlook subpopulation is located on exposed sandstone along 

the rim of the canyon. Ten individuals were located and sampled on 28 August 

2015. Four individuals were parasitizing Bigelowia nuttallii, two individuals were 

parasitizing Liatris microcephala, three individuals were parasitizing Helianthus 

longifolius, and one individual was parasitizing Bigelowia and Liatris concurrently. 

 

Fig. 1.15 LRC-Wolf Creek Overlook. Individuals occur within a linear distance of 130 meters along the 

canyon rim. 
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Moon Rock (MR), Dekalb County, Alabama (34.52125, -85.61079) 

The Moon Rock population is located on sandstone outcrops within Comer Scout 

Reservation (Boy Scouts of America) and was accessed with guidance from Alabama 

botanist Michelle Reynolds and landowner permission. Thirteen individuals were located 

and sampled on 21 August 2015. Twelve individuals were parasitizing Bigelowia 

nuttallii, and one was parasitizing Liatris microcephala and Croton willdenowii 

concurrently. This population showed a skew toward parasitization of Bigelowia, 

although Liatris was abundant in proximity to Cuscuta individuals. 

 

Fig. 1.16 Moon Rock. Linear distance between the two groups of clustered individuals is approximately 

114 meters. Total area of all exposed sandstone outcrop, which encompasses all individuals in this 

population, is approximately 2.54 acres (10,279 sq. meters). 
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Moss Rock Preserve (MRP), Jefferson County, Alabama (33.38174, -86.84912) 

The Moss Rock Preserve population is located on three separate sandstone outcrop 

glades within the preserve, which is owned by the City of Hoover, Alabama and 

maintained largely by volunteer groups. Permission to access and collect samples at 

Moss Rock Preserve was granted through Friends of Moss Rock Preserve. Twenty-four 

individuals were located and collected on 12 September 2015.  

 

Fig. 1.17 Moss Rock Preserve. The three subpopulations are located on three disjunct outcrops within 

the preserve. Linear distance between the two farthest glades is 2012 meters.  
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 Boulder Glade 

Sixteen individuals were located at Boulder Glade. Eleven individuals were 

parasitizing Bigelowia nuttallii, three were parasitizing Bigelowia and Croton 

willdenowii concurrently, one was parasitizing Bigelowia and Hypericum 

gentianoides concurrently, and one individual was parasitizing Liatris 

microcephala. 

 

Fig. 1.18 MRP-Boulder Glade. Individuals in this glade occur within a linear distance of 

approximately 128 meters. Total area of exposed sandstone is approximately 9.85 acres (39,862 

sq. meters). 
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Little Glade 

Three individuals were located and sampled at Little Glade. Two individuals were 

parasitizing Bigelowia nuttallii, and one was parasitizing Liatris microcephala. 

 

Fig. 1.19 MRP-Little Glade. The three individuals on this glade occur within a linear distance of 

23 meters. Total area of outcrop is approximately 0.9 acres (3683 sq. meters). 
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Moon Rock Glade 

Five individuals were located and samples at Moon Rock Glade. Four individuals 

were parasitizing Liatris microcephala, and one individual was parasitizing 

Hypericum gentianoides. No individuals were found parasitizing Bigelowia, 

although it was abundant in proximity to other host plants and Cuscuta harperi 

individuals. 

  

Fig. 1.20 MRP-Moon Rock Glade. Individuals on this glade occur within a linear distance of 29 

meters. Total area of exposed outcrop is approximately 1.87 acres (7568 sq. meters). 
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North Fork Creek (NFC), Marion County, Alabama (34.23639, -87.89535) 

The North Fork Creek population is located on exposed sandstone on the east bank of 

North Fork Creek and is the westernmost of Cuscuta harperi populations located. Eight 

individuals were located and sampled on 4 September 2015. Seven individuals were 

parasitizing Liatris microcephala, and one individual was parasitizing Liatris and 

Hypericum gentianoides concurrently. 

 

Fig. 1.21 North Fork Creek. All individuals occur within a linear distance of 363 meters along the east 

bank of North Fork Creek. 
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South Texas Flatrock (ST), Heard County, Georgia (33.21074, -85.21247) 

The South Texas population is located on sandstone outcrops on and adjacent to lands 

managed by Hancock Forest Management, a division of Hancock Timber Resource 

Group. Tissue sampling was performed with permission from HTRG (Permit# TAP-

2015-20). A total of six individuals were located and sampled on 18 September 2015 

and 2 October 2015. Three individuals were parasitizing Liatris microcephala, and three 

were parasitizing Hypericum gentianoides. Individuals in this population were widely 

scattered across the expansive outcrop. South Texas Flatrock is outside of the 

documented range of Bigelowia nuttallii. 

 

Fig.1.22 South Texas Flatrock. Individuals on this outcrop occur along a linear distance of approximately 

900 meters. They are widely distributed across a total area of approximately 94 acres (151,278 sq. 

meters) of exposed granite. 
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Town Creek Glade (TC), Dekalb County, Alabama (34.38781, -86.02216) 

The Town Creek population is located on exposed sandstone on the north bank of 

Town Creek. Ten individuals were located and sampled on 11 September 2015. All 

individuals were parasitizing Bigelowia nuttallii, although Liatris microcephala is present 

and abundant in this habitat. 

 

Fig. 1.23 Town Creek Glade. Individuals are clustered within a linear distance of 12 meters, although the 

outcrop expands for more than 645 meters along the bank of Town Creek. 

 

Research Objectives 

Overarching goals of this project include investigation into population genetics and 

genomics of Cuscuta harperi as well as elucidation of mechanisms underlying host 

selection by individuals of the species.  To address these goals, we: 1) develop 

molecular markers to be used in evaluation of genetic diversity within and among 

populations of C. harperi, 2) use greenhouse-based experiments to examine foraging 

behavior and host selection by C. harperi seedlings in order to test whether observed 

differences in host use by population are due to active choice by parasite seedlings or, 

instead, are due to differential establishment success and survival of seedlings after 

random attachment, and 3) use field-based experiments to evaluate differential survival 

and reproductive success of C. harperi individuals on different host species. 
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Development of molecular markers for C. harperi will allow us to address population-

level questions regarding heterozygosity and genetic variation within and among 

populations. Due to the primarily selfing reproductive strategy of the species, we expect 

to find a high inbreeding coefficient within all populations. Population genetics studies in 

other primarily autogamous species have predicted F values as high as 0.986 

(Cascante-Marin et al. 2014). Because we expect similar results in C. harperi, we are 

primarily interested in evaluating genetic variability between individuals and among 

populations. We evaluate the efficacy of different methods to address these and other 

questions regarding genetic variation and population structure, the results of which can 

be used to determine conservation priorities for distinct populations of C. harperi and 

contribute to current efforts to protect the plant on public and private lands.   

Additionally, we discuss the development and implementation of a conservation project 

for in situ safeguarding of C. harperi on property owned and protected by The Nature 

Conservancy. We evaluate ex situ cultivation and propagation methods to conserve the 

genetics of local parasite populations and host species and determine the best methods 

of transplantation in order to establish a novel population for long term protection. 

Greenhouse-based trials are used to test the hypothesis that seedlings from populations 

where mature individuals are found growing overwhelmingly on one host over another 

differ in foraging behavior from seedlings originating from a population with more 

generalist host usage by mature plants. Field-based studies are used to test the 

hypothesis that C. harperi displays differential, non-random survivorship on different 

host species in the population sampled. Results of greenhouse and field studies 

combined help elucidate whether observed patterns of host specificity are due to active 

choice by parasite seedlings or, instead, are governed by environmental factors that 

make specific hosts more suitable in particular habitats. These results also have 

potential to be informative in studies of host use by closely related, weedy Cuscuta 

species, some of which are widespread and destructive agricultural pests. 
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CHAPTER TWO: Developing Population Genetics Markers: Testing Microsatellite 

Primers 

INTRODUCTION 

Microsatellites have long been a popular method of detecting variability within genomes; 

their heritability, selective neutrality, and high mutation rate make them ideal markers for 

studies of disease linkage, parentage and breeding, and population genetics. Their 

ubiquitous use in medical science and forensics helped to make the method convenient 

and affordable, and applications of the method in ecological genetics and conservation 

biology have become exceedingly common in the last few decades (Jarne and Lagoda 

1996, Selkoe and Toonen 2006). 

Microsatellites can be a powerful tool for population biologists because of their high 

levels of polymorphism. Allelic variability can range from 1-50 alleles per locus, with 

expected heterozygosity often above 0.5 (Jarne and Lagoda 1996, Peakall et al. 1998). 

However, some limitations on this variability occur in small or isolated populations, 

populations subject to recent bottlenecks, and in species that employ an autogamous 

reproductive strategy (Vaird 1996, DeWoody and Avise 2000). 

A multitude of studies has shown that microsatellite regions are often shared among 

congeners and sometimes even across genera. Some examples of organisms that have 

been used in cross-amplification studies are fish, turtles, cetaceans, birds, and primates 

(Rico et al. 1996, Fitzsimmons et al. 1995, Schlötterer et al. 1991, Primmer et al. 1996, 

Garza et al. 1995). Extensive work has also been done with plants, including 

gymnosperms and angiosperms (van de Ven and McNicol 1996, Whitton et al. 1997, 

Brown et al. 1996). This increases the utility of microsatellites as genetic markers, 

especially in species without available reference genomes. 

In this study we assess the utility of microsatellites to answer population genetics 

questions, including individual relatedness within populations and gene flow between 

populations, in Cuscuta harperi. PCR amplification and identification of variable 

microsatellite regions has been successfully utilized in the closely related species 

Cuscuta rostrata with similar test sample sizes (McNeal, unpublished data). We also 
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investigate cross-amplification of C. harperi microsatellites in other closely related 

Cuscuta species. 

 

METHODS 

Sampling and DNA Isolation 

In order to obtain plant tissue for DNA isolation, field methods included minimally 

destructive sampling of flower buds and stem tips from Cuscuta harperi individuals from 

each population. Samples of plant material were preserved by desiccation using silica 

gel in labeled specimen bags at the site of collection. DNA isolations were performed 

following the protocol set forth by Doyle and Doyle (1987), with minor modifications by 

the McNeal lab. 

Primer Testing 

In a previous project in the McNeal lab, primer pairs were developed to amplify putative 

microsatellite loci mined from Cuscuta harperi transcriptome data. MSATCOMMANDER 

1.0.8 was used to detect microsatellite arrays, identify highly conserved regions of 

sequence flanking those arrays, and design primers specific to those regions (Faircloth 

et al. 2008). Parameters were set to search for stretches of at least five consecutive 

trinucleotide repeats or four consecutive tetranucleotide repeats. Optimal primer pairs 

were designed via the program to generate amplicons of 150-450 base pairs. 

Tetranucleotide repeats were chosen preferentially over trinucleotide repeats, and loci 

containing a higher number of repeat units were given precedence.  Using this specific 

set of design parameters, forty unique primer pairs were generated.  

Primer pairs were initially tested on a single test DNA (Population HO) using standard 

PCR conditions. Thermocycler settings were as follows:  

1. 94ºC for 2 minutes 
2. 94ºC for 30 seconds 
3. 54ºC for 30 seconds 
4. 72ºC for 1 minute 30 seconds 
5. Go to Step 2 30 times 
6. 72ºC for 4 minutes 
7. Hold at 4ºC 
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PCR products were loaded onto 1% agarose gels, and successful amplification of 

fragments was determined by gel electrophoresis, ethidium bromide staining, and 

photography under ultraviolet light. Primers that failed to amplify products in initial 

testing were retested on a different test DNA (Population LRC). For retest, 

concentration of primers was increased to 50 µM to maximize available primer relative 

to amount of sample DNA, and annealing temperature (Step 3) was lowered to 50º C to 

lower binding stringency of primers.  

Primer pairs that successfully amplified products of appropriate size were subsequently 

tested on seven individuals with each representing distinct, widely-scattered populations 

(Fig. 2.1). Assessment of allelic variation based on fragment size was made by 

visualization of PCR products run on 3% agarose gels. 

 

Fig. 2.1 Map of populations represented in microsatellite primer testing. CB=Chitwood Barrens; 

HO=Harrison Outcrop; LRC=Little River Canyon; MRP=Moss Rock Preserve; NFC=North Fork Creek; 

ST=South Texas Flatrock; TC=Town Creek Glade.  

Primer pairs were also tested in three closely-related Cuscuta species (C. pentagona, 

C. rostrata, and C. tasmanica) to determine whether cross-amplification of fragments 

would occur. Successful cross-amplification was assessed by visualization of PCR 

products on 1% agarose gels using PCR products amplified from C. harperi as a 

positive control. 
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RESULTS 

Primer Testing on Cuscuta harperi 

Fourteen of the forty primer pairs successfully amplified products of appropriate size; 

these loci were subsequently tested across seven populations. (For primer 

specifications, see Table 2.1). Twelve out of these fourteen primer pairs amplified 

fragments of uniform size across all seven populations (Fig. 2.2a). Only two of the 

fourteen primer pairs, (Ch_comp27033; Ch_comp27123), exhibited allelic variation 

based on variability in amplified fragment length among the seven test individuals (Fig. 

2.2b). No heterozygous individuals were identified. 

 

Fig. 2.2a. Invariable loci             2.2b. Variable loci. 

Fig. 2.2a. Gel picture of PCR products from four of the twelve primers. Lanes 1, 30 are 1Kb ladder; 2-8 represent 

primer pair Ch_comp14089; 9-15 represent primer pair Ch_comp20347; 16-22 represent primer pair 

Ch_comp25752; 23-29 represent primer pair Ch_comp26430. Uniform fragment sizes indicate invariable loci. 2.2b. 

Gel picture of PCR products from two primers that produced fragments of varying size, indicating variation at these 

loci. Lane 1 is 1Kb ladder; 2-8 represent primer pair Ch_comp27033; 9-15 represent primer pair Ch_comp27123.     
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Table 2.1 Sequence and identification information for C. harperi primer pairs that amplified fragments of target size 

(150-450 base pairs). 
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Cross-amplification of PCR products in related Cuscuta species 

Results of cross-amplification experiments show that all fourteen primer pairs that 

successfully amplified fragments of appropriate size also amplified PCR products in at 

least one of three closely related Cuscuta species. All primers tested amplified 

fragments in C. pentagona, eleven primers amplified fragments in C. rostrata, and eight 

primers amplified fragments in C. tasmanica (Table 2.2). 

 

 

Table 2.2 C. harperi primers amplify fragments across closely related Cuscuta species 

 

DISCUSSION 

Microsatellite primer testing resulted in minimal success in identifying loci that had allelic 

variation across seven individuals representing widely spaced populations of C. harperi.  

The populations tested in these experiments were chosen as representatives from 
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across the entire range of C. harperi; therefore it is unlikely that any variation at these 

loci would be discovered with further testing across other populations. Not only was an 

extremely low level of variation found in microsatellite loci between populations, no 

heterozygosity was detected within populations. Although the third locus sampled on the 

gel in Fig. 2.2a shows two distinct bands, it is unlikely that each individual from all seven 

populations is heterozygous at that locus. A more likely explanation for the appearance 

of double bands on the gel for those seven individuals is that two paralogous loci were 

amplified concurrently, considering all individuals are homozygous at the rest of the loci 

sampled. There is not strong enough evidence based on our results to call any 

individuals heterozygous at any locus sampled. This lack of genetic variability and 

apparent heterozygote deficiency could be the result of a predominantly autogamous 

reproductive strategy which eliminates heterozygosity from the population, relatively 

recent divergence from a single small founder population, or a genome less prone to 

slip-strand mispairing and generation of new alleles. Regardless of the underlying 

cause, there is insufficient variability across populations at these microsatellite loci to 

address population genetics questions in C. harperi.  

Interestingly, when tested on individuals of closely related Cuscuta species, C. 

pentagona, C. rostrata, and C. tasmanica specifically, primers successfully amplified 

fragments of appropriate size. These results indicate potential utility of these loci in 

future studies of those species, as well as the possibility for use in other Cuscuta 

species not yet tested. 
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CHAPTER THREE: Developing Population Genetics Markers - Targeted Sequence 

Capture 

INTRODUCTION 

The use of high-throughput targeted capture methods has become increasingly 

widespread as their utility and affordability surpasses other genome sequencing 

methods such as whole-genome sequencing (WGS) and multiplex PCR. Targeted 

capture was first developed and utilized in human genomics, with initial applications 

including identification of genetic variants associated with specific diseases as well as 

addressing human evolutionary questions (Jones and Good 2016). Since their advent, 

sequence capture methods have become more technically streamlined, and their use in 

non-model species without reference genomes has become more popular.  

Targeted sequence capture utilizes DNA or RNA baits designed to hybridize to 

complementary DNA fragments in order to isolate specific regions of the genome for 

sequencing. The technique allows for pull-down of specific genes of interest or regions 

containing putative molecular markers, such as single nucleotide polymorphisms 

(SNPs). Selection of these specific regions allows for greater depth of coverage of each 

targeted sequence than other less-specific methods of genome partitioning. We will 

employ sequence capture followed by high-throughput sequencing to identify SNPs 

from hundreds of captured loci concurrently. This technique should greatly increase the 

likelihood of finding variable genetic loci within the C. harperi genome as compared with 

using microsatellites, with which we have had minimal success in identifying variable 

loci in this species. Using sequence capture, we will isolate exon regions and noncoding 

sequences flanking those regions from approximately seven-hundred single-copy genes 

from each of the sampled individuals of C. harperi and analyze those loci to identify 

independently assorting SNPs scattered across the genome. 

Use of targeted sequence capture in genomic studies of species without a priori 

sequence data is possible in part because RNA baits can work across closely related 

taxa. Studies have shown that capture sensitivity, (the percentage of targets covered by 

at least one mapped read), is as high as 90% when sequence divergence is below 9% 

(Jones and Good 2016). Baits designed from one reference genome have successfully 
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captured orthologous sequences between numerous related species, including humans 

and chimpanzees, several species of chipmunks and squirrels, and multiple anurans 

(Vallender et al. 2011, Bi et al. 2012, Good et al. 2015, Hedtke et al. 2013). The ability 

to utilize bait sequences across taxa not only simplifies initial study design, it also 

eliminates cost incurred from obtaining sequence data prior to bait design. In order to 

potentially take advantage of these benefits, we tested baits pre-designed for use in 

Ipomoea, a closely related genus to Cuscuta also in Convolvulaceae, on two Cuscuta 

libraries; however, due to suboptimal results, we proceeded with bait design using 

sequence data from the recently sequenced and assembled Cuscuta harperi genome 

(unpublished data). 

 

METHODS 

DNA Isolation 

DNA isolations were performed from silica gel-dried plant material following the protocol 

set forth by Doyle and Doyle (1987), with minor modifications by the McNeal lab. After 

initial isolation protocol, DNA samples were resuspended in 50 ul 0.01M Tris and 

reprecipitated with a solution of 30% (w/v) polyethylene glycol (PEG 8000) and 30 mM 

MgCl2. At this concentration of PEG 8000, fragments less than 300 bp in length will not 

precipitate efficiently; this is an initial size-selection step to eliminate DNA fragments 

that are smaller than our target fragment size of ~300 bp. Following PEG 8000 

precipitation, DNA samples were resuspended in 21 ul 0.01M Tris, and concentrations 

were quantified using a NanoDrop™ spectrophotometer. 

Library Preparation 

One hundred individual DNA samples were chosen for inclusion in the first sequencing 

run. 96 C. harperi individuals were selected based on population and spatial location 

within study sites in order to provide a comprehensive cross-section of individuals 

spanning the species’ range which will allow us to maximize genetic variation captured. 

Samples were also screened for inclusion based on quality of DNA isolation, including 

concentration and purity. We included DNA samples from four additional Cuscuta 
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species as outgroups for comparison of SNP signatures: C. campestris, C. pentagona, 

C. polygonorum, and C. rostrata.  

DNA samples were sheared to appropriate size for Illumina sequencing (~300-700 base 

pairs in length) using the NEBNext dsDNA Fragmentase® enzyme, which can be used 

to cut DNA into a desired size-range of fragments based on time-dependent reactions 

with a fair amount of precision.  

After enzymatic shearing, samples were purified and further size-selected using 

Agencourt® AMPure® XP magnetic beads to capture DNA while leaving contaminants 

in solution. Once cleaned, library preparation of samples was performed using the 

NEBNext® Ultra™ II DNA Library Prep Kit for Illumina. With this kit, individually-

assigned, uniquely barcoded sequencing adapters were ligated onto the total genomic 

DNA fragments to generate libraries of barcoded fragments ready for sequencing on 

Illumina platforms. Upon completion of library prep, concentrations of DNA in each 

library were accurately quantified with a Qubit™ flourometer, and sequencing libraries 

from ten individuals at a time will be pooled together in equal concentration in 

preparation for targeted sequence capture reactions.  

Bait Design 

We targeted genomic regions surrounding exon sequence identified as being under 

selection to remain in single copy in most plants, including the closest photosynthetic 

relatives of Cuscuta. By selecting loci that are known to be single-copy, we can better 

ensure that any SNPs detected are polymorphisms at homologous positions and not the 

result of divergence of paralogous genes or repeat elements. This is particularly 

important in plants, which often have widespread paralogy and repetitive or complex 

genomes due to gene duplication and polyploidy events. Targeted sequence capture 

has been shown to be useful in identifying both orthologous and paralogous genes, both 

within individual genomes and across species, which makes it especially important to 

correct for this type of bias during data collection and analysis (Grover et al. 2012).  

We provided a dataset to MYcroarray which contained exon sequence from 704 single-

copy nuclear genes from the C. harperi genome as identified by a collaborator using the 
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program OrthoMCL (Todd Michael, pers. comm.). After stringent filtering to remove any 

non-specifically binding baits or baits matching repeat regions or organellar sequences 

in Ipomoea nil (used as a divergent reference genome) a total of 19,188 baits covering 

938,513 bp of targeted sequence were selected. Baits were designed at approximately 

3X tiling density; each bait is 120 nucleotides (nt) in length, and baits overlap at ~43 nt 

intervals so that three baits cover each base of unique sequence.  

Synthesis of baits is currently in progress. Once baits are received, we will proceed with 

sequence capture reactions on prepared libraries of C. harperi individuals and 

outgroups. 

Sequencing 

Products of sequence capture reactions will be amplified using PCR in order to increase 

concentration of enriched libraries. Ten amplified capture libraries, each containing 

library fragments from ten uniquely barcoded individuals, will be sent to Georgia 

Genomics Facility where they will be pooled and sequenced on an Illumina NextSeq. A 

Mid Output flow cell will be used to generate up to 130 million reads, each 150 bp in 

length, for a total of approximately 18 gigabases (Gb) of sequence data. Since the initial 

run will include ten enriched libraries, each comprised of ten pooled individuals, this 18 

Gb of data will be shared among 100 individuals; this translates to approximately 180 

million bp (Mb) of sequence per individual. We estimate approximately 1 Mb of 

sequence to be captured by baits, including the 938,513 targeted bases plus captured 

flanking regions.  If capture efficiency is 50%, (an extremely conservative estimate), we 

would expect ~90X coverage per targeted base for each individual. This ensures that 

coverage of flanking non-coding intron and untranslated regions, where we expect to 

find more SNPs but where coverage will decrease rapidly as distance increases from 

exons targeted by the baits, will be adequate to accurately distinguish homozygotes, 

heterozygotes, and sequencing errors. Once data from the first sequencing run is 

analyzed, a second run will be performed in order to sequence additional individuals 

and supplement sequence data from the first run for individuals with insufficient 

coverage.  
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Even with a high level of capture efficiency, we anticipate a portion of reads will be off-

target and that the random genomic sequence contained in those reads will include 

chloroplast genome sequence that can be used for chloroplast haplotyping. For 

example, if capture efficiency is 80%, ~36 million bp of sequence from each individual 

will be from the chloroplast genome assuming that roughly 5% of the DNA in the initial 

libraries is chloroplast DNA. A conservative estimate of 5% chloroplast DNA is 

appropriate based on returns from previous genomic sequencing of C. harperi; 36 

million bp of sequence at 5% cpDNA would lead to over 20X coverage of the chloroplast 

genome for each individual.  

 

DISCUSSION 

Variation in SNPs among individuals as well as variability of chloroplast haplotypes can 

be used to assess genetic diversity within and among populations. We will analyze 

these data in order to address various questions related to the population genetics of 

the species. We hope to elucidate patterns of population dispersal, genetic bottlenecks, 

founder effects, and drift, using this information to inform conservation priorities. We 

also anticipate the potential to address questions related to phenotypic variation and 

genome evolution from this large pool of data. 
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CHAPTER FOUR: Host Specificity: Greenhouse Trials 

INTRODUCTION 

Host-parasite and predator-prey interactions are important topics of study within ecology 

and evolutionary biology. Plants that have evolved a parasitic lifestyle are a compelling 

group of organisms in which to study both, because some parasitic plants display 

foraging behavior that is similar in many ways to animal foraging behavior (McNamara 

and Houston 1987). Research has shown that Cuscuta species can detect volatile 

organic compounds (VOCs) emitted by potential host plants and use them as chemical 

cues during foraging (Runyon et al. 2006); they are also capable of detecting host 

quality prior to making attachments and selectively attaching to hosts determined to 

provide the most benefit to the parasite (Kelly 1992).  These behaviors are similar to 

those studied in models of optimal foraging strategies in animals.  

Mechanisms of host selection and resource acquisition by parasitic plants are of 

particular interest when studying an organism that has adapted to a specialist host-

selection strategy. When describing predators and parasites, there is a continuum that 

ranges from broad generalism to narrow specialization; one widely accepted definition 

of specialization is the discriminant use of available resources (Kelly et al. 1988). This 

essentially means that an organism does not use resources proportionally to their 

availability, but rather displays patterns of preference for one resource over another 

regardless of the abundance of that resource. 

Cuscuta harperi can be classified as a specialist species due to its narrow host range. It 

is most frequently found parasitizing Bigelowia nuttallii and Liatris microcephala while 

seemingly ignoring closely related species growing in proximity to these hosts.  

However, field observations of C. harperi have revealed varying levels of host specificity 

among populations, with some populations displaying a clear preference for one host 

over another. Other populations utilize a wider host range which includes Bigelowia and 

Liatris but show no apparent preference for one over the other. Individuals from the 

Hinds Road population (HR), located within the species’ core range in northeast 

Alabama, utilize a variety of hosts that includes a relatively even mix of Bigelowia 

nuttallii and Liatris microcephala. In contrast, individuals from the Harrison Outcrop 
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population (HO), located in the coastal plain region of Georgia, 140 miles southeast of 

the next closest population, have historically used Bigelowia as a near-exclusive host 

even though Liatris is also abundant on that outcrop (Fig. 4.1, 4.2a/b). 

 

Fig. 4.1 Map of sampled C. harperi populations, with Hinds Road and Harrison Outcrop populations 

indicated by stars. 

 

Fig. 4.2a. Hinds Road. Each marker represents a C. harperi individual sampled; different colors represent 

different host species parasitized.  
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Fig. 4.2b. Harrison Outcrop. Each marker represents a C. harperi individual sampled; homogeneity of 

yellow markers indicates almost exclusive use of Bigelowia nuttallii as a primary host. 

We utilize greenhouse experiments to address whether observed patterns of host use 

result from active choice by seedlings or, rather, are due to differential establishment 

success after random attachment. We also investigate whether patterns of host 

selection exhibited by seedlings from Hinds Road differ from patterns exhibited by 

seedlings from Harrison Outcrop. 

Greenhouse experiments were designed to test the following hypotheses: 

1. Cuscuta harperi seedlings will exhibit selective foraging behavior and host selection. 

We predict seedlings will display patterns of host selection that differ from random host 

selection and growth.  

2. Cuscuta harperi seedlings from Harrison Outcrop, where mature individuals are found 

growing overwhelmingly on Bigelowia, will display a different pattern of host choice and 

establishment success than that of seedlings from Hinds Road, where mature 

individuals are found parasitizing a mix of hosts. 
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METHODS 

Plant Collections 

Cuscuta harperi seeds were collected from Harrison Outcrop in September 2015 and 

from Hinds Road in November 2015. Host plants were either germinated from seeds or 

propagated from living plant material collected in summer and fall 2015. Bigelowia 

nuttallii host material used in this study was collected from Harrison Outcrop, Little River 

Canyon-Canyon View Overlook, Little River Canyon-Wolf Creek Overlook, Hinds Road, 

and Town Creek Glade. Liatris microcephala host propagules were collected from Little 

River Canyon-Lynn Overlook and South Texas Flatrock. Coreopsis pulchra propagules 

were collected from Little River Canyon-Lynn Overlook. 

Study Design 

Experiments were conducted in 4-inch plastic pots containing a soil mixture of equal 

parts potting soil, perlite, and sand. Each pot contained four alternative host choices 

placed equidistantly from the seedling in the corners of the pot. Potential choices for the 

seedling were Bigelowia, Liatris, Coreopsis, and a nonliving bamboo skewer. Bigelowia 

and Liatris were included as known preferred hosts. Coreopsis does not occur on Hinds 

Road or Harrison Outcrop; it was not found as a host for mature parasites on outcrops 

where it abundantly co-occurs with C. harperi despite being in the same family as the 

preferred hosts (Asteraceae) and, as such, was included as a non-preferred host. The 

bamboo skewer was inserted vertically into the soil to serve as an artificial plant stem 

control that should produce a shadow but a negligible volatile chemical gradient in the 

air. Hosts and control were arranged within pots using four different configurations to 

control for directional growth variables, such as light and airflow, within the greenhouse 

(Fig. 4.3). Host plants and non-living control were arranged within the pots to be 

equidistant from parasite seedlings while maximizing distance between potential hosts. 

Each pot contained a 9-cm filter paper disc delineated into quadrants representing each 

of the potential hosts (Fig. 4.4).  
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Fig. 4.3. Pot configurations. Potential hosts: Bigelowia nuttallii (Bn), Coreopsis pulchra (Cp), Liatris 

microcephala (Lm), and Non-living Control (NC). Seedling: Cuscuta harperi (Ch).  

 

 

Fig. 4.4. Host pots with filter paper labeled to quadrant. B=Bigelowia C=Coreopsis L=Liatris (-)=Non-living 

control. 



57 
 

 

Experiments were conducted using block design; the greenhouse bench was divided 

into eight blocks with eight pots in each block. Each block was randomly assigned two 

pots of each configuration (1-4), and pots were randomly assigned a parasite 

population, (HR or HO), so that one pot of each configuration contained a parasite from 

each of the populations in every block. Position of pots within blocks was also 

randomized in order to control for microclimate variables within the greenhouse (Fig. 

4.5). Pots were arranged to allow maximum distance between replicates within study 

blocks. [For complete listing of C. harperi parent populations and host populations for 

each pot ID, see Appendix 1.] 

 

Fig. 4.5. Schematic representation of bench layout for greenhouse trials. Bench dimensions: 208 cm L X 

112 cm W; block dimensions: 56 cm L X 52 cm W. 

A total of 128 replicates were performed in two separate trials within the Joyce and Ira 

Pegues Memorial Greenhouse at Kennesaw State University. Trial 1 (replicates 1-64) 

ran from 20 July 2016 through 04 August 2016. Trial 2 (replicates 65-128) ran from 13 
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August 2016 through 29 August 2016. Experiments were performed under standard 

greenhouse conditions. [For temperature data, see Appendix 2]. 

Seedling Germination 

In order to germinate seeds of Cuscuta harperi, they were placed in Gooch crucibles for 

scarification with concentrated sulfuric acid for 30 minutes, rinsed with deionized water, 

soaked in 10% bleach solution for 2 minutes, and thoroughly rinsed again with 

deionized water to slough off excess dead chaff from the outer seed coat. The sterile, 

scarified seeds were placed on damp filter paper in petri dishes which were sealed with 

wax film strips until germination to prevent fungal contamination. Once the seedlings 

had grown to approximately 1-2 cm in length, they were transferred to microcentrifuge 

tubes with the swollen hypocotyl anchor end of the seedling stem immersed in 

deionized water and the growing tip of the seedling extending out from the mouth of the 

tube. Seedlings were placed in proximity to a light source and allowed to straighten for 

approximately 24 hours to bring all seedlings to a relatively uniform shape and length, at 

which point the seedlings were placed into experimental pots. 

Data Collection 

In order to determine whether seedlings displayed selective foraging behavior, 

directionality and quadrant position of apical meristem were monitored and recorded 

twice daily until seedlings formed an attachment to a host. Host attachment was 

characterized by a seedling irreversibly coiling around host stem or leaf tissue. If an 

individual died before an attachment was made, the quadrant into which the apical 

meristem was growing when the seedling died was recorded as the final quadrant 

location.  

In order to address the question of differential survival by seedlings after host selection, 

establishment success was measured for each individual that formed an attachment. 

Successful establishment was qualified as secondary stem growth after formation of 

haustoria at initial point of attachment. 

To address whether seedlings were simply attaching to the most proximal host tissue, 

straight-line distance from the center of the microcentrifuge tube to the point of 
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attachment to host was measured as well as straight-line distance from center to two 

additional potential attachment points on nearby host tissue. 

Total seedling growth in length was measured for those individuals that did not form 

attachments in order to ascertain maximum growth before exhaustion of seedling 

resources.  

Data Analysis 

In order to address the question of whether patterns of host use were due to active 

choice by seedlings or secondary to differential establishment success after random 

attachment, distribution of attachments and final quadrant distribution data were 

analyzed using Chi-square Goodness of Fit test to compare results to a random 

distribution. To address the question of whether seedlings from different populations 

would display different patterns of host selection, attachment and final quadrant 

distribution data were analyzed using Chi-square Contingency Analysis.  

To evaluate whether seedlings from each population showed different patterns of 

survival on different hosts, post-attachment establishment success was analyzed using 

Chi-square Contingency Analysis.  

For all analyses a p-value of <0.05 was considered statistically significant. 

Distances to attachment points were compared to distances to nearby host tissue in 

order to determine whether seedlings were attaching to the closest available host 

tissue.  

Average, median, and range values for unattached seedling length were calculated for 

both trials separately and for all replicates combined. A two-sample unequal variance t-

test was performed to determine whether there was a difference in final length of 

seedlings between populations.  
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RESULTS 

To address the question of random vs. non-random attachment to hosts, all replicates 

from both populations of seedlings were first considered together. Out of 128 total 

replicates, 55 seedlings formed an attachment to a host or the non-living control (Table 

4.1). 52 of the 55 attachments were made to either Bigelowia or Liatris; distribution is 

significantly different from random attachment distribution (p= 5.614e-11). Final 

quadrant distribution was also significantly different from random distribution (p=3.582e-

05). Attachment and final quadrant distribution data from individual populations were 

also considered separately. Attachment distributions for both Harrison Outcrop and 

Hinds Road were significantly different from a random distribution; p= 3.219e-6 for both 

analyses. Final quadrant distribution for each population was also significantly different 

from a random pattern of distribution when considered independently; p= 0.034 and p= 

0.001, respectively. 

Population Bigelowia Liatris Coreopsis Non-living Control 

Harrison Outcrop 15 6 0 1 

Hinds Road 18 13 1 1 

TOTAL 33 19 1 2 

Table 4.1. Attachment data by population. 

 

To address the question of whether seedlings from different populations display a 

significant difference in host choice, the number of successful attachments on each host 

were compared between HO and HR. Chi-square contingency analysis indicated the 

difference in host attachments by seedlings between populations is not statistically 

significant (p= 0.3261). Contingency analysis of final quadrant distribution also showed 

no significant difference by population (p= 0.5406). 

Post-attachment establishment success on different hosts, qualified by secondary stem 

growth past the initial point of attachment, showed a significant difference between 

populations (p= 0.04) (Table 4.2). No individuals that attached to Coreopsis or the non-

living control demonstrated secondary stem growth and were therefore not included in 

the analysis. 
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Population Bigelowia Liatris 

Harrison Outcrop 8 1 

Hinds Road 6 7 

Table 4.2 Establishment success by population. 

 

Straight-line distances to the point of attachment on host tissue was measured and 

compared to straight-line distances to two other potential attachment points closest to 

the center of the pot (Fig 4.6). In 96 percent of replicates, straight-line distance to 

attachment was greater than the distance to the closest host tissue, indicating that the 

parasite is not simply attaching to the closest host available. 

Fig. 4.6. Example of distance 

measurement method. 

Orange line represents C. 

harperi seedling attached to 

Bigelowia leaf. Distance 1 is 

straight-line to point of 

attachment. Distances 2 and 

3 represent straight-line 

distances to other host tissue 

closest to center of 

experimental pot. 

 

Average total length of unattached seedlings was 62.55 mm overall. Median seedling 

length was 59 mm. Difference in final seedling length between populations was not 

statistically significant (p=0.13). The seedling with the most growth in length was 141 

mm long at the time of its death, most likely due to resource exhaustion. The seedling 

with the least growth in length at its death was 9 mm, which was possibly to due to an 

alternative cause, such as pest damage. 
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DISCUSSION 

Results of this study indicate that Cuscuta harperi seedlings are capable of selective 

foraging and that patterns of host selection are the result of active choice by seedlings 

rather than due to differential establishment success after random attachment to a host. 

The data clearly show that host attachment patterns differ from distributions that would 

be expected if seedlings were attaching at random to any available host, with a 

significant majority of attachments on Bigelowia and Liatris, the two most frequently 

parasitized hosts in natural populations (Fig. 4.7). These findings are consistent with the 

idea that C. harperi seedlings are capable of detecting signals from potential host plants 

and using those cues to actively choose an appropriate host when presented with 

multiple options.  These results are not surprising considering that other Cuscuta 

species have been shown to display chemotactic responses to volatile organic 

compounds as well as the ability to choose a host based on perceived nutritional 

content prior to haustorial connections (Runyon et al. 2006, Kelly 1992). 

 

Fig. 4.7. Observed attachments by host plant. Lower right represents a random attachment distribution. 

Additionally, we recorded the final quadrant into which unattached seedlings were 

growing at the time of their deaths, presumably due to exhaustion of resources initially 

stored in the seed before they were able to successfully find and attach to a host. We 

evaluated these data in combination with host selection data from attached seedlings in 

order to evaluate growth directionality. Final quadrant distribution was significantly 

different from an expected random distribution, which also supports the hypothesis that 



63 
 

C. harperi seedlings display selective foraging behavior (Fig 4.8). It is notable that this 

behavior is present in seedlings from both populations tested, which supports the 

hypothesis that selective foraging behavior arose in a common ancestor before these 

two populations diverged and, possibly, prior to the divergence of the species from the 

shared common ancestor with other Cuscuta species. It is also particularly interesting 

that seedlings in these trials appear to actively avoid Coreopsis, which is also seemingly 

avoided by C. harperi in natural populations. Coreopsis is absent at both Hinds Road 

and Harrison Outcrop; therefore it can be assumed that individuals from parent 

populations were never exposed to VOCs or other cues from Coreopsis and that 

mechanisms governing the avoidance response likely evolved in C. harperi prior to the 

divergence of these two populations.  

 

 

 

Fig. 4.8. Distribution of final quadrant location of seedling apical meristem. Figure in lower right 

represents expected quadrant distribution if seedlings were foraging at random.  

 

Patterns of host selection by population were compared to determine whether seedlings 

from different population displayed significantly different foraging and attachment 

behavior parallel to that exhibited by individuals in parent populations. Twenty-two HO 

seedlings successfully attached to hosts in these trials; fifteen out of twenty-two 
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attachments (68.2%) were on Bigelowia and six (27.3%) were on Liatris. Of the thirty-

three HR individuals that successfully attached to hosts, eighteen (54.5%) were on 

Bigelowia and thirteen (39.3%) were on Liatris (Fig. 4.9).  

 

 

Fig. 4.9. Observed distribution of host selection by population. Different colored markers on maps 

indicate host species each sample individual was found parasitizing.  

Contingency analysis did not find the difference in distribution of host use between 

populations to be statistically significant; however, HO seedlings showed a more 

pronounced skew toward parasitization of Bigelowia while HR seedlings used a more 

even mix of both Bigelowia and Liatris. This trend aligns with patterns of host selection 

observed in mature parent populations and suggests that foraging behavior governed 

by innate cellular and molecular mechanisms may evolve rapidly enough to be 

divergent between populations. Sample size of attachments is relatively small for both 

Harrison Outcrop and Hinds Road, (n=22 and n=33, respectively), and differences in 

patterns of host selection might be significant with further replication of these trials. 

These results raise another consideration: if a percentage of seedlings from Harrison 

Outcrop choose and successfully parasitize Liatris in a greenhouse setting, then why 

are individuals found on Bigelowia almost exclusively in the natural population? One 

potential explanation is that seasonal climate differences in the coastal plain 

physiographic region of Georgia, as compared to the piedmont and ridge and valley 
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physiographic regions in which other populations are located, could contribute to host 

availability and, ultimately, to observed host use patterns. Specifically, average 

temperatures at Harrison Outcrop are typically higher earlier in the spring than at other 

populations, and that difference could potentially lead to earlier germination of C. 

harperi seedlings. Bigelowia and Liatris are both perennial species; however, Bigelowia 

is evergreen with leaves present year-round, while Liatris dies back to underground 

corms over winter. If C. harperi seedlings germinate earlier at Harrison Outcrop than in 

populations found farther north, then they may be seeking hosts and making initial 

attachments while Bigelowia is abundant on the outcrop but before new Liatris growth is 

available.  

In order to investigate this possibility, we visited Harrison Outcrop on March 11, 2017, 

almost two months earlier than seedlings have been observed in an early stage of 

growth post-attachment at Little River Canyon on the Cumberland Plateau of Alabama. 

During this visit we located multiple newly germinated seedlings; based on size and the 

retention of the connection to the ground, seedlings had likely germinated within two to 

three days prior to our visit (Fig. 4.10a-d). All of the seedlings located were already 

attached to or growing straight toward Bigelowia; no above-ground Liatris growth was 

observed. Further study is required to more thoroughly investigate this phenomenon; 

however, these preliminary observations suggest specialization on Bigelowia may result 

from early Cuscuta seed germination at this site. 
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Fig. 4.10 a/b. Seedlings are attached to Bigelowia leaves and forming haustoria. Initial connection to the 

ground is still intact, indicating age of seedling is approximately 3-5 days. 

 

Fig. 4.10 c/d.  4.10.c Top: Seedling, still unattached, growing toward Bigelowia. Bottom: Seedling 

attached to Bigelowia with initial ground connection intact. 4.10.d Top: Two seedlings, unattached and 

growing toward Bigelowia. Bottom left: Seedling attached to Bigelowia with ground connection intact. 

 

Differential Establishment Success 

Establishment success after host selection and attachment was evaluated in order to 

investigate whether seedlings from either population were better able to parasitize one 

host over another in the longer term and whether differential survival may contribute to 

patterns of host use observed across populations. Successful establishment was 
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qualified as secondary growth past the point of initial coiling around host tissue, which 

required formation of haustoria and extraction of nutrients from the host in order to 

enable the seedling to send out new stem shoots. Results of this trial showed that 

Harrison Outcrop seedlings had much greater establishment success on Bigelowia, 

while Hinds Road seedlings had nearly equal success on Bigelowia and Liatris. These 

results, paired with results discussed previously that indicate Harrison Outcrop 

seedlings preferentially parasitize Bigelowia, suggest that observed patterns in foraging 

behavior and host use may be due to a suite both genetic and environmental factors.  

Further research is needed to investigate the genetic and ecological factors influencing 

host use patterns observed in C. harperi populations. We have shown that C. harperi is 

capable of selective foraging and active host choice; however, the cellular and 

molecular mechanisms underlying these behaviors remain to be elucidated. More 

extensive investigation into environmental factors, such as parasite virulence, host 

resistance, and nutrient availability and composition, is also necessary to better 

understand how local adaptations affect patterns of host use in C. harperi.  
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CHAPTER FIVE: Host Specificity: Field Survivorship Study 

INTRODUCTION 

Lynn Overlook at Little River Canyon National Preserve has the highest Cuscuta harperi 

population density of any of our study sites, and both Bigelowia nuttallii and Liatris 

microcephala are present in abundance. Interestingly, Liatris was parasitized much 

more frequently than Bigelowia and other potential hosts in late August 2015 when 

tissue from mature individuals was sampled for DNA isolation from this site (Fig. 5.1). 

Notably, Coreopsis pulchra, a species related to Bigelowia and Liatris in Asteraceae, is 

also present and abundant on this glade; however, no C. harperi individuals were 

observed successfully parasitizing Coreopsis during the 2015 field season.  

In May 2016, recently attached seedlings were observed connected to both primary 

hosts, Liatris and Bigelowia, as well as Coreopsis. At this point in the season, Bigelowia 

and Liatris are relatively comparable in size and biomass available for parasitization, 

and C. harperi seedlings were observed forming attachments to both species with 

similar frequency.  In this study, we assess survival and reproductive fitness of C. 

harperi individuals that formed initial attachments on different hosts at Lynn Overlook.  
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Fig. 5.1. Map of host use at Lynn Overlook (LRC-LO). Different colored markers indicate host species C. 

harperi individuals were parasitizing at the time of collection in August 2015. 

 

METHODS 

For our initial census, we marked 65 total host plants with nascent parasite attachment 

and growth located within four relatively small sample areas where high parasite density 

was observed. Thirty-one Liatris, thirty Bigelowia, and four Coreopsis were marked at 

the base of their stems with flagging tape, and GPS coordinates were recorded for each 

of the four sample areas (Fig. 5.2). Study sites were selected to be out of view from the 

road in order to avoid drawing public attention to both the research project and to the 

sensitive habitat itself.  
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Fig. 5.2. Red markers indicate locations where hosts were marked on 11 May 2016 for survivorship 

study. 

In September 2016, a follow-up census was made to assess survivorship of marked 

individuals. In order to be counted as a survivor, individuals were required to be present 

and flowering and/or fruiting at the time of census.  

 

RESULTS 

Twenty-one out of thirty-one marked individuals whose initial attachments were made 

on Liatris and seven out of thirty marked individuals whose initial attachments were 

made on Bigelowia were present and flowering at the time of the census. Two of the 

four individuals marked on Coreopsis were also present and flowering; however, these 

individuals were not included in the analysis. 

Chi-square contingency analysis was performed in order to address the question of 

whether C. harperi individuals are more likely to survive to reproductive stage when 

initial haustorial attachment at the seedling stage is on Bigelowia or Liatris. Analysis 

revealed a significantly higher rate of survival to reproduction by individuals initially 

parasitizing Liatris as compared to those initially parasitizing Bigelowia (p=0.0005).  
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Because C. harperi typically produces a single seed per flower, we counted the number 

of flowers and/or seed capsules produced by each successful individual as a direct 

measure of reproductive fitness. A two-sample t-test with assumed unequal variance 

was performed to address whether there was a difference in reproductive fitness 

between flowering individuals using Bigelowia versus Liatris as initial hosts. The 

difference in fitness of individuals starting on each host, as measured by mean number 

of flowers/capsules produced, was not statistically significant (p=0.276). 

 

DISCUSSION 

The population of C. harperi at Lynn Overlook has one of the widest host ranges of all 

observed populations and can be considered to exhibit a relatively generalist pattern of 

host use. However, observational data has revealed a noticeable trend toward 

parasitization of Liatris microcephala over Bigelowia nuttallii and other potential host 

species in this population by mature plants in late summer. Results of this study indicate 

that seedlings from the Lynn Overlook population have a significantly higher chance of 

surviving to reproductive maturity when seedlings establish initial attachment on Liatris 

than when initial attachment is made on Bigelowia; this evidence supports the 

hypothesis that differential establishment success after initial host attachment influences 

observed patterns of host use by mature C. harperi individuals in this population.  

Interestingly, results also indicate that once a seedling formed a successful parasitic 

attachment and was able to reach reproductive status, fitness did not significantly differ 

between the two primary host species. While the two individuals found flowering on 

Coreopsis were not included in the analysis, they do provide evidence that it is possible 

for C. harperi to survive to maturity on that species. We hypothesize that there are 

underlying environmental or genetic factors in this population that make Liatris an easier 

host for C. harperi to successfully parasitize; differences in host defenses, nutrient or 

water availability, or some combination of these factors may be contributing to observed 

patterns of parasite survival to maturity.  
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Further investigation is clearly needed to elucidate the factors that contribute to host use 

patterns observed among C. harperi populations. In May 2017, thirty-three host stems 

with nascent parasite attachments were marked for observation. A follow-up census will 

be performed in September 2017. 
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CHAPTER SIX: Cuscuta harperi Ex Situ Conservation Project 

INTRODUCTION 

Preservation of biodiversity and the protection of rare and endangered species are 

some of the foremost goals in conservation biology; development of effective strategies 

to achieve these goals is a major challenge facing individuals and organizations working 

in this field. Available funding for conservation projects is limited, and deciding how best 

to allocate resources can also be a formidable task.  

For preservation of species and ecosystems, in situ conservation strategies have long 

been the standard. Protecting plants and animals within their natural habitats, as well as 

the habitats themselves, is the overarching goal of conservation biology. However, 

management of natural habitats and ecosystems is not achievable in some instances 

due to circumstances beyond general lack of resources, such as uncooperativeness of 

land owners, local governing bodies, or native citizens. Ex situ strategies are often 

employed to protect individuals of threatened species and to preserve genetic diversity 

when in situ conservation is not practical. Captive breeding programs, seed banking, 

and germplasm tissue collections are some popular examples of ex situ conservation 

strategies. 

Both in situ and ex situ strategies present specific sets of challenges. In situ 

conservation requires a massive amount of planning, organization, and resource 

allocation. Specific issues that must be addressed by in situ project development teams 

include determining breadth of focus, from the ecosystem level to the molecular level, 

as well as consideration of size and surroundings of the protected area and potential 

impact of biotic and abiotic factors (Wilcox 1984.) Ex situ conservation also requires 

careful allocation of resources as well as cooperation between entities involved in 

collection, storage, care, and breeding of protected species. Ex situ conservation of 

plants has also traditionally been focused on maintaining genetic diversity of 

agriculturally valuable species, although more attention has been shifted to forestry 

applications and the conservation of wild and native flora (Cohen et al. 1991). 
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Occurring in only four populations- all on private property- in two widely disjunct 

counties in Georgia, Cuscuta harperi is assigned a legal status of endangered in the 

state. The species is also assigned a global ranking of G2/G3 (NatureServe Explorer 

2015), indicating its vulnerability to extinction due to small population sizes and habitat 

destruction. Here, we describe the development, implementation, and preliminary 

results of a project designed in collaboration with The Nature Conservancy that 

combines ex situ and in situ strategies for the conservation of C. harperi. The project 

objectives include introduction of individuals into the habitat, careful monitoring of 

introduced individuals for survival and reproductive success, and establishment of a 

novel population for long-term management and continued research on the species. 

Project Site 

Camp Meeting Rock, 52 miles southwest of Atlanta in Heard County, Georgia, is home 

to Flat Rock Methodist Campground, an important local historic site where religious 

camp meetings were held every summer beginning around 1878. The campground itself 

is public property owned by the City of Franklin and managed by a board of trustees; 

however, the 130 acres of adjacent granite outcrop is owned and protected by The 

Nature Conservancy. Camp Meeting Rock is home to many rare and endangered 

species, including Isoetes melanospora (Black-spored quillwort) and Pinus palustris 

(Longleaf pine), and The Nature Conservancy is working to protect the outcrop habitat 

from anthropogenic disturbances associated with forestry practices and quarrying (The 

Nature Conservancy 2017).  

In addition to preservation of the habitat, The Nature Conservancy has implemented a 

program of prescribed burning at the preserve in order to restore a more natural 

disturbance regime. The region surrounding the xeric habitat of the outcrop would 

historically have been dominated by longleaf pine forest and pine/oak forest, both of 

which would have been dependent on frequent fire. Many of the rare species associated 

with this type of habitat would have thrived in the shallow soil ecotone between the 

outcrop and the forest, which becomes too dense and shady with the overgrowth of 

secondary successional understory species in the absence of fire. There is substantial 

evidence that prescribed burning of habitats that are adapted to frequent, low-intensity 
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surface fires can maintain biodiversity and protect natural resources (Pausas and 

Keeley 2009). By reintroducing fire to the ecosystem, a more natural outcrop, ecotone, 

and pyric forest community can be established. 

Camp Meeting Rock houses the ideal habitat for Cuscuta harperi, including vegetative 

sandy soil patches with abundant host plants of Liatris microcephala and Hypericum 

gentianoides. Although no C. harperi individuals have been documented at Camp 

Meeting Rock, the property lies in between two of the recorded populations in Heard 

County; it is located one mile southwest of Allen/Aubrey Flatrock and four miles 

northeast of South Texas Flatrock. Given the location, habitat, and host availability, it is 

not only possible, but likely that the species would have occurred historically on and 

around Camp Meeting Rock. These factors, coupled with long-term protection of the 

property and prescribed burning by The Nature Conservancy, make Camp Meeting 

Rock an ideal location for introduction of C. harperi for long-term study and 

conservation. 

 

METHODS 

Plant Collection and Propagation 

Preserving the genetics of target species is one of the major objectives of most 

conservation programs. For this project, we used seeds from individuals in the 

Allen/Aubrey Flatrock (AA) population, the closest naturally occurring population to 

Camp Meeting Rock (CMR). C. harperi seeds were collected from AA individuals during 

field work on 28 October 2015 and maintained in dry storage.  

In order to germinate seedlings of Cuscuta harperi, the seeds were placed in Gooch 

crucibles for scarification with concentrated sulfuric acid for 30 minutes, rinsed with 

deionized water, soaked in 10% bleach solution for 2 minutes, and thoroughly rinsed 

again with deionized water to slough off excess dead chaff from the outer seed coat. 

The sterile, scarified seeds were placed on damp filter paper in petri dishes which were 

sealed with wax film strips until germination to prevent fungal contamination. Once the 

seedlings had grown to approximately 1-2 cm in length, they were transferred to 
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microcentrifuge tubes with the swollen basal anchor end of the seedling stem immersed 

in deionized water and the growing tip of the seedling extending out from the mouth of 

the tube. Seedlings were placed in proximity to host plants in the greenhouse and 

monitored for survival, host attachment, and post-establishment success. 

Liatris microcephala was selected as the initial host species for this project. Liatris is 

abundant on the CMR outcrop and, unlike Hypericum, is perennial.  In order to avoid 

introduction of genetic material from outside the preserve, Liatris individuals were 

collected from CMR and planted in 4-inch plastic pots in the Joyce and Ira Pegues 

Memorial Greenhouse at Kennesaw State University. Plants were maintained for 

several weeks under standard greenhouse conditions, including a regular watering and 

fertilizer regimen, in order to alleviate any deleterious effects of transplantation prior to 

the introduction of parasites.  

Approximately twenty C. harperi seedlings were placed in proximity to Liatris hosts in 

the greenhouse beginning on 20 July 2016. On 22 Aug 2016, eight individuals were 

selected based on viability criteria, including size, number of stem attachments to host, 

and observed robustness; both host and parasite were subsequently transported to 

CMR for transplantation. 

Site Selection and Outplanting 

On 12 July 2016 we scouted CMR for vegetative patches to serve as potential locations 

to introduce transplants. Experimental plots were chosen based on abundance of 

available host species, sparseness of competitive vegetation, and observed patterns of 

water flow and retention. In collaboration with a Nature Conservancy Ecologist, 

experimental outplanting plots were designated as Unburned (UB) if plots fell outside of 

the controlled burn area, Burned (B!) if the plots were located inside the burn area, and 

Questionable (B?) if the plots fell outside of the burn area but could be included in future 

burns if needed. Each Plant ID refers to an individual of C. harperi growing on a single 

Liatris individual. 
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Hosts and attached C. harperi individuals were planted in experimental plots on 22 

August 2016. GPS points were obtained and mapped for all outplanted individuals (Fig. 

6.1).  

 

Fig. 6.1. Map of outplanted C. harperi individuals. UB indicates plot is outside the prescribed burn area; 

B! indicates plot is within the burn area; B? indicates plot could potentially be included in future burns. 

 

RESULTS AND DISCUSSION 

Plants were initially monitored for survival and reproductive fitness. The first 

assessment visit was made on 19 Sep 2016. Living C. harperi tissue was located for 

seven of the initial eight individuals, although three of the initial Liatris hosts did not 

survive. Six of the seven surviving C. harperi individuals were producing flower buds, 

and some had open flowers.  

We performed a second assessment on 15 Nov 2016 in order to check for successful 

seed set by individuals found flowering at the first assessment. We located and counted 
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seed capsules on individuals in four plots, totaling approximately 1335 capsules. [For 

complete flowering and seed set data, see field notes, Appendix 3].  

In order to assess initial success of the project, we compared flowering and seed set 

data from individuals in the newly established CMR population with similar data from 

individuals in the Little River Canyon-Lynn Overlook (LRC-LO) population, where the 

greatest density of C. harperi individuals occurs and where reproductive success has 

been previously quantified (See Chapter 5). Since all individuals at CMR were 

outplanted on Liatris as the initial host, we only compare flower and seed set data from 

LRC-LO individuals that established initial host connection on Liatris. Individuals from 

LRC-LO were collected from the field at the flowering stage; because each C. harperi 

flower generally produces a single seed, we used flower count as a proxy for 

reproductive success in this population, assuming that each flower represented one 

seed that would have been produced by each individual. For the CMR population, we 

assessed flower/seed data collected at the end of the season (15Nov2016). For 

individuals with seed capsules present, we counted number of seeds as reproductive 

success; if no seed capsules were present, number of flowers or buds was counted as a 

proxy for reproductive success.  

In the LRC-LO sample (n=31), 10 individuals (32.2%) did not survive to reproduction, 6 

individuals (19.4%) achieved low reproductive success, and 15 individuals (48.4%) 

achieved high reproductive success. Mean number of flowers was 234.3 with a range 

from 6 to 803. In the CMR population, 2 individuals (25.0%) did not survive to 

reproduction, 3 individuals (37.5%) achieved low reproductive success, and 3 (37.5%) 

achieved high reproductive success. Mean number of flowers/seeds was 225.5 with a 

range from 10 to 639. Statistical analyses of these data are not informative due to low 

sample size and high variance; however, comparison of data from these two 

populations does allow us to make inferences about the success of the CMR 

population. The distribution of individuals in the novel CMR population into categories of 

no, low, or high reproductive success is comparable to the categorical distribution in the 

LRC-LO sample (Fig. 6.2), taken from the most successful of all thirteen populations 

visited during this thesis project.  
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Fig. 6.2 Comparing Distributions of Reproductive Success – Little River Canyon-Lynn Overlook and 

Camp Meeting Rock. Less than 50 flowers/seed capsules is considered Low Reproductive Success; 

greater than 50 flowers/seed capsules is considered High Reproductive Success.  

 

We surveyed the CMR sites on 20 May 2017 to assess the status of experimental plots 

after the first winter. At the site of CMR01UB, healthy C. harperi stems were located 

growing on two separate Liatris hosts in the plot, with approximately ten connection 

points. Since C. harperi is an annual, this individual is clearly the result of germination of 

seed from the first round of 2016 outplantings. This preliminary result is encouraging 

considering the level of scarification required to initiate germination of C. harperi seeds 

as well as the myriad factors that make it challenging for a seedling to locate and attach 

to a host.  

Although new C. harperi was only found growing at one of the plots, there are now 

considerable seed banks present at the locations of the four individuals that produced 

seeds in the first season, and those seeds should remain viable in the soil to potentially 

germinate in later years. It is also notable that Liatris microcephala within the plots 

appeared abundant and healthy, clearly benefitting from the reduction in competition 

from pine trees that did not survive drought conditions in late summer and fall 2016. 

With a solid seed bank and ample host plants, we anticipate continued germination and 

success of C. harperi at these experimental plots in the future.  
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The Nature Conservancy plans to burn the section of the property adjacent to our plots 

in spring 2018. We are in discussions with Nature Conservancy contacts to arrange for 

inclusion of some of the plots in the burn area. In May 2017 we observed significant 

build-up of organic plant material, which may present a barrier for newly germinated 

seedlings to reach host plants, covering the ground in many of the plots. It is likely that 

fire would clear the organic duff layer, revealing bare sandy soil and improving 

germination and successful host attachment by removing obstacles impeding the 

search of the tiny seedlings.  

Additionally, we plan to use the same methods described here to introduce a new set of 

C. harperi individuals into experimental plots on the outcrop in August 2017.  We will 

continue monitoring survival and reproductive success of outplanted individuals, as well 

as assessing the effects of prescribed fire on C. harperi and its host plants. Preliminary 

results presented here are encouraging, and we anticipate this project to continue well 

into the foreseeable future. 
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Appendix 1: Host and Parasite Population Data 

This table provides information about block number, C. harperi parent populations, and 

host plant populations for each greenhouse trial replicate (chapter 4).  C. harperi parent 

populations are abbreviated as follows:  HO=Harrison Outcrop HR=Hinds Road. Host 

populations are abbreviated as follows: CVO=Canyon View Overlook HO=Harrison 

Outcrop HR=Hinds Road LO=Lynn Overlook ST=South Texas Flatrock TC=Town Creek 

Glade WCO=Wolf Creek Overlook. 

All host plants were used for both trials unless designated with an asterisk (*), in which 

case the population listed is the source population of the replacement individual. 

Trial One – Replicates 1-64 

Pot 
ID 

Block 
# 

Host Population 
 

C. harperi Parent 
Population 

  Bigelowia Coreopsis Liatris   

A1 7 HR LO LO HO 

B1 1 CVO LO LO HR 

C1 1 HO LO ST HO 

D1 5 HO LO ST HR 

E1 5 HO LO LO HO 

F1 4 HO LO LO HO 

G1 6 HO LO ST HR 

H1 2 HO LO LO HO 

I1 6 HO LO LO HO 

J1 3 HO LO LO HR 

K1 8 HO LO ST HR 

L1 2 HO LO LO HR 

M1 8 HO LO LO HO 

N1 3 TC LO LO HO 

O1 7 HO LO LO HR 

P1 4 WCO LO LO HR 

A2 3 HR LO LO HO 

B2 4 CVO LO LO HO 

C2 1 HO LO ST HO 

D2 6 HO LO ST HO 

E2 8 HO LO LO HO 

F2 1 HO LO ST HR 

G2 5 HO LO ST HO 

H2 7 HO LO LO HO 

I2 3 WCO LO LO HR 

J2 7 HO LO LO HR 

K2 5 HR LO ST HR 

L2 6 HO LO LO HR 

M2 8 HO LO LO HR 

N2 4 TC LO LO HR 

O2 2 HO LO LO HO 

P2 2 WCO LO LO HR 

A3 1 HR LO LO HR 
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B3 3 CVO LO LO HR 

C3 8 HO LO ST HO 

D3 1 HO LO ST HO 

E3 7 HO LO LO HR 

F3 4 HO LO ST HO 

G3 4 HO LO LO HR 

H3 5 HO LO LO HO 

I3 3 WCO LO LO HO 

J3 2 HO LO LO HR 

K3 8 HR LO ST HR 

L3 6 HO LO LO HO 

M3 5 HO LO LO HR 

N3 7 TC LO LO HO 

O3 6 WCO LO LO HR 

P3 2 HO LO LO HO 

A4 4 HR LO LO HR 

B4 1 CVO LO LO HR 

C4 8 HO LO ST HO 

D4 1 HO LO LO HO 

E4 5 HO LO LO HO 

F4 4 WCO LO ST HO 

G4 8 HO LO LO HR 

H4 6 HO LO LO HO 

I4 2 WCO LO LO HO 

J4 7 HO LO LO HR 

K4 7 HO LO ST HO 

L4 3 HO LO LO HO 

M4 5 HO LO LO HR 

N4 6 HO LO LO HR 

O4 3 HO LO ST HR 

P4 2 HR LO LO HR 

 

 

Trial Two – Replicates 65-128 

Pot 
ID 

Block 
# 

Host Population 
 

C. harperi Parent 
Population 

  Bigelowia Coreopsis Liatris   

A1 7 HR LO LO HR 

B1 1 CVO LO LO HO 

C1 1 HO LO ST HR 

D1 5 HO LO ST HO 

E1 5 HO LO LO HR 

F1 4 HO LO LO HR 

G1 6 HO LO ST HO 

H1 2 HO LO* LO HR 

I1 6 HO LO LO HR 

J1 3 HO LO LO HO 
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K1 8 HO LO ST HO 

L1 2 HO LO* LO* HO 

M1 8 HO LO LO* HR 

N1 3 TC LO LO HR 

O1 7 HO LO LO HO 

P1 4 WCO LO LO HO 

A2 3 HR LO LO HR 

B2 4 CVO LO LO HR 

C2 1 HO LO ST HR 

D2 6 HO LO ST HR 

E2 8 HO LO LO* HR 

F2 1 HO LO* ST HO 

G2 5 HO LO ST HR 

H2 7 HO LO LO HR 

I2 3 WCO LO LO HO 

J2 7 HO LO LO HO 

K2 5 HR LO ST HO 

L2 6 HO LO* LO* HO 

M2 8 HO* LO LO HO 

N2 4 TC LO LO HO 

O2 2 HO LO LO HR 

P2 2 WCO LO LO HO 

A3 1 HR LO LO HO 

B3 3 CVO LO LO HO 

C3 8 HO LO ST HR 

D3 1 HO LO* LRC* HR 

E3 7 HO LO* LO* HO 

F3 4 HO LO ST HR 

G3 4 HO LO LO HO 

H3 5 HO LO* LO* HR 

I3 3 WCO LO LO HR 

J3 2 HO LO LO HO 

K3 8 HR LO ST HO 

L3 6 HO LO LO HR 

M3 5 HO LO LO HO 

N3 7 TC LO LO HR 

O3 6 WCO LO LO* HO 

P3 2 HO LO* LO HR 

A4 4 HR LO LO HO 

B4 1 CVO LO LO HO 

C4 8 HO LO ST HR 

D4 1 HO LO* LO HR 

E4 5 HO LO LO HR 

F4 4 WCO LO ST HR 

G4 8 HO LO LO HO 

H4 6 HO LO LO HR 

I4 2 WCO LO* LO HR 

J4 7 HO LO LO HO 

K4 7 HO LO ST HR 
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L4 3 HO LO LO* HR 

M4 5 HO LO LO* HO 

N4 6 HO LO LO HO 

O4 3 HO LO ST HO 

P4 2 HR LO LO HO 
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Appendix 2: Greenhouse Temperature Data 

Trial 1 

 

Trial 2 

Date  Low High Average 

18 July 2016 Day 73°F 88°F 80.0°F 

 Night 73°F 88°F 78.1°F 

19 July 2016 Day 73°F 90°F 81.5°F 

 Night 73°F 90°F 78.7°F 

20 July 2016 Day 73°F 90°F 80.5°F 

 Night 73°F 90°F 78.1°F 

21 July 2016 Day 74°F 94°F 80.5°F 

 Night 73°F 94°F 78.7°F 

22 July 2016 Day 72°F 87°F 80.0°F 

 Night 72°F 87°F 76.8°F 

23 July 2016 Day 73°F 85°F 78.5°F 

 Night 73°F 85°F 76.4°F 

24 July 2016 Day 73°F 89°F 80.5°F 

 Night 73°F 89°F 77.4°F 

25 July 2016 Day 73°F 91°F 81.0°F 

 Night 73°F 91°F 77.5°F 

26 July 2016 Day 73°F 90°F 81.5°F 

 Night 72°F 90°F 78.4°F 

27 July 2016 Day 74°F 85°F 80.0°F 

 Night 74°F 85°F 79.1°F 

28 July 2016 Day 73°F 85°F 79.5°F 

 Night 73°F 85°F 77.5°F 

Date  Low High Average 

11 Aug 2016 Day 73°F 85°F 79.0°F 

 Night 73°F 85°F 77.3°F 

12 Aug 2016 Day 74°F 86°F 80.0°F 

 Night 74°F 86°F 79.3°F 

13 Aug 2016 Day 74°F 86°F 80.5°F 

 Night 73°F 86°F 78.3°F 

14 Aug 2016 Day 73°F 86°F 80.5°F 

 Night 73°F 86°F 77.3°F 

15 Aug 2016 Day 73°F 86°F 80.0°F 

 Night 73°F 86°F 77.9°F 

16 Aug 2016 Day 73°F 86°F 80.0°F 

 Night 73°F 86°F 77.5°F 

17 Aug 2016 Day 73°F 87°F 81.5°F 
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 Night 72°F 87°F 78.3°F 

18 Aug 2016 Day 73°F 88°F 81.0°F 

 Night 73°F 88°F 78.0°F 

19 Aug 2016 Day 73°F 86°F 79.5°F 

 Night 72°F 86°F 76.4°F 

20 Aug 2016 Day 73°F 86°F 79.5°F 

 Night 72°F 86°F 76.1°F 

21 Aug 2016 Day 72°F 85°F 79.0°F 

 Night 72°F 85°F 76.0°F 

22 Aug 2016 Day 71°F 84°F 79.0°F 

 Night 71°F 84°F 75.8°F 

23 Aug 2016 Day 70°F 85°F 79.0°F 

 Night 70°F 85°F 75.9°F 

24 Aug 2016 Day 73°F 84°F 79.0°F 

 Night 73°F 84°F 77.0°F 

25 Aug 2016 Day 72°F 86°F 80.0°F 

 Night 72°F 87°F 77.2°F 

26 Aug 2016 Day 74°F 87°F 80.5°F 

 Night 73°F 87°F 78.5°F 

27 Aug 2016 Day 72°F 85°F 80.0°F 

 Night 72°F 85°F 77.4°F 

28 Aug 2016 Day 73°F 85°F 80.0°F 

 Night 73°F 85°F 78.9°F 

29 Aug 2016 Day 73°F 85°F 79.5°F 

 Night 72°F 85°F 78.0°F 
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Appendix 3: Camp Meeting Rock Field Notes 

Plant ID Burn 
Status 

C. harperi 
parent 
population  

Liatris parent 
population 

Initial 
Seedling  
Viability 
(1=good; 2=very 
good; 
3=excellent) 

Project Notes 
(Ch= Cuscuta harperi 
Lm= Liatris microcephala) 

CMR 01 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

2 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Healthy Ch and Lm; Ch 
spread to 3 adjacent Lm; flowering. 
 
15 Nov 2016: 639 seed capsules 
 
20 May 2017: 1 Ch seedling located! 
Approx. 10 connections on 2 Lm. Lm 
in patch is abundant and lush. Lm 
appears to be benefiting from lack 
of trees 2º to drought. 
 

CMR 02 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

1 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Initial Lm host dead; 
no Ch present. Evidence of animal 
digging. 
 

CMR 03 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

2 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Initial Lm host dead; 
appears drought-killed. Minimal 
living Ch tissue on adjacent Lm. No 
flowers or buds. 
 
15 Nov 2016: Approx. 10  buds 
present; no capsules. 
 
20 May 2017: No new Ch seedlings 
located. Lm appears lush and healty. 
 

CMR 04 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

1 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Ch present and healthy 
on initial Lm host and 10+ adjacent 
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Lm. Abundant buds; few open 
flowers. 
 
15 Nov 2016: Approx. 20-25 
capsules. Very difficult to visualize 
due to drought-stricken Lm stems 
the same color as capsules and dried 
Ch tissue. 
 
20 May 2017: No new Ch seedlings 
located. 
 

CMR 05 B? Potential 
to include 
in burn 

Allen/Aubrey Camp Meeting 
Rock 

2 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Present and healthy on 
initial Lm host and 6-7 adjacent Lm; 
flowering. 
 
15 Nov 2016: No capsules visible; no 
sign of flowers; knocked off by 
animal?? Very dry. 
 
20 May 2017: No Ch seedlings 
located. Lm is healthy and lush; lots 
of leaf litter on the ground- could 
potentially hinder growth of new Ch 
seedlings. Including this patch in the 
next burn could be beneficial. 
 

CMR 06 B! Routinely 
included in 
burn 

Allen/Aubrey Camp Meeting 
Rock 

3 22 Aug 2016: Outplanted and 
watered in. Placed in proximity to 
other Lm and also where water flow 
could disperse to another Lm dense 
area of habitat in same patch. 
 
19 Sep 2016: Ch very healthy on 
initial Lm host; spread to 5-6 
adjacent Lm; buds and open flowers 
abundant. 
 
15 Nov 2016: 473 capsules; still 
numerous open flowers and buds. 
 
20 May 2015: No Ch seedlings 
located. Monitor closely post-burn 
to evaluate effect on leaf litter and 
Ch germination. 
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CMR 07 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

3 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Initial Lm dead; 
appears drought-killed. Living Ch 
tissue on adjacent Lm and Seymeria. 
10+ buds. 
 
15 Nov 2016: No Ch tissue 
relocated. 
 
20 May 2017: No Ch seedlings 
located.  
 

CMR 08 UB Not 
routinely 
burned 

Allen/Aubrey Camp Meeting 
Rock 

2 22 Aug 2016: Outplanted and 
watered in. 
 
19 Sep 2016: Healthy on initial Lm; 
spread to approx. 10 adjacent Lm. 
Flowers and buds abundant. 
 
15 Nov 2016: 198 swollen capsules; 
lots of dry flowers that didn’t set 
seed. 
20 May 2017: No Ch seedlings 
located. Dense leaf litter could 
potentially hinder growth of Ch 
seedlings that germinate. Including 
this patch in the next burn could be 
beneficial for Ch.  
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