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Abstract

The log-likelihood function is the optimization objective in the maximum likelihood method

for estimating models (e.g., logistic regression, neural network). However, its formulation is

based on assumptions that the target classes are equally distributed and the overall accuracy

is maximized, which do not apply to class imbalance problems (e.g., fraud detection, rare

disease diagnoses, customer conversion prediction, cybersecurity, predictive maintenance).

When trained on imbalanced data, the resulting models tend to be biased towards the

majority class (i.e. non-event), which can bring great loss in practice. One strategy for

mitigating such bias is to penalize the misclassification costs of observations di↵erently in

the log-likelihood objective function in the learning process. Existing penalized log-likelihood

functions require either hard hyperparameter estimation or high computational complexity.

In the present work, we propose a novel penalized log-likelihood function by including penalty

weights as decision variables for observations in the minority class (i.e. event) and learning

them from data along with model coe�cients/parameters. The proposed log-likelihood

function is applied to train logistic regression and neural network models, which are compared

with models trained by existing penalized log-likelihood functions on 10 public imbalanced

datasets. The model performance is measured by the statistics of Area under ROC Curve

(i.e. AUROC or AUC) over repeated runs of 10-fold stratified cross validation, including

95% confidence interval, mean and standard deviation, as well as the training time. A

more detailed analysis is conducted to examine the estimated probability distributions and

additional performance measurements (i.e. Type I error, Type II error, accuracy) under the

chosen probability cuto↵. The results demonstrate that the discrimination ability of the

models is improved by using the proposed log-likelihood function as the learning objective

while reducing or maintaining the computational complexity compared with existing ones.
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Chapter 1

Introduction

1.1 Motivation

The research work was motivated by challenges faced in the anti-money laundering (i.e.

AML) and bankruptcy prediction problems from industry clients in 2017.

In summer 2017, as an intern on a team with members from Ermas Consulting Inc., Mizen

Group, and DXC Technology on developing AML models for a leading insurance company,

the conversations with experienced AML experts revealed to me the current challenges in

this field – an extremely large number of false positive cases and very high labor costs. A

part of the reason was that the analysts relied on rule-based models and scenario analysis

to detect AML activities for the regulation purpose. As the concept of data science became

more popular, it was hoped to incorporate data science techniques to reduce false positive

rates while maintaining or improving true positive rates. As known, su�cient historical data

was expected to train a good predictive model. However, in the AML data, there were very

few observations flagged with the money laundering in the database, although there were so

many unflagged observations, either truly normal or undetected. This problem was referred

to as the class imbalance problem in the literature, which was a category of problems of

classifying the imbalanced data with an unequal target class distribution. By definition,

the imbalanced data was the dataset where observations in the majority class (i.e. event)

were many more than the minority class (i.e. non-event). In the context of the anti-money

problem, the majority class was normal and the minority class was money laundering.
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In the meantime, as a Ph.D. student in Analytics and Data Science at Kennesaw State

University, the bankruptcy prediction project in Dr. Priestley’s binary classification class

and Dr. Ni’s data mining class in 2017 presented the same challenge of class imbalance

problems. The dataset was provided by a national credit bureau. The proportion of

bankruptcy observations was 0.12% while the proportion of non-bankruptcy was 99.88%.

The standard statistics and machine learning models did not perform well. Although the

overall accuracy was as high as 99%, almost all bankruptcy observations were misclassified

as non-bankruptcy, which would bring great loss in practice. To understand the nature of

the imbalanced data and the reason the standard models did not work well, an experimental

study was conducted to show how the di↵erent event rates (i.e. the proportion of the

minority class) influenced discrimination abilities of seven bankruptcy prediction models

[115]. The results of this study demonstrated two assumptions of the training objective

function formulations for standard statistics and machine learning models: 1) the target

classes were equally distributed; 2) the misclassifications of target classes are equal. Under

these assumptions, the objective essentially maximized the overall accuracy.

Class imbalance problems existed in almost every area (e.g., credit scoring, customer

churn prediction, defective product detection, rare disease diagnosis, cybersecurity, fraud

detection). Because of the significance of the problem, it would be meaningful to develop a

novel solution method. In the related literature, an existing solution method was the cost-

sensitive learning, which was about adjusting the optimization objective (e.g., log-likelihood

function) by assigning di↵erent penalty weights to misclassification costs of observations in

the training process. That was very interesting for me, because the concentration of my

Master’s study was the optimization. King and Zeng proposed a penalized log-likelihood

objective function to train logistic regression in rare event data or imbalanced data [57]. In

this penalized log-likelihood function, class penalty weights were determined by the estimated

population proportion of the minority class and its sample proportion. As known, it was

very hard to accurately estimate the population proportion [23], which ultimately influenced

the model performance, as demonstrated in a related empirical study showing how the

di↵erent class penalty weights influenced the performance of logistic regression models on the

imbalanced data [116]. The next question became how to intelligently determine the penalty

2



weights. For that, Deng used the Gaussian kernel [21], as well as Maalouf and Trafalis [73].

But that presented the challenge of high computational complexity O(n3), which did not

meet the requirements of big data. Inspired by a discussion with Dr. Xie on the choice of

hyperparameters used in a deep learning model we were working on, Dr. Ray and I had a

conversation about learning a parameter from data. We started to think about treating class

penalty weights as decision variables in the log-likelihood function and learning them from

data along with model coe�cients/parameters, instead of pre-defining them and plugging

them in the log-likelihood function as constant values. Experiments on this idea showed

promising results, which ended up to be this research work.

1.2 Contribution

A novel penalized log-likelihood function is proposed to better estimate classification models

for the improved di↵erentiation ability and computation e�ciency in class imbalance

problems. The penalty weights for misclassification costs of observations in the minority

class are included as decision variables in the log-likelihood function and learned from data

along with model coe�cients/parameters. This addresses the challenges of either hard

hyperparameter estimation or high computational complexity faced by existing penalized

log-likelihood functions for the imbalanced data, where penalty weights are pre-defined by

some rules and plugged in the log-likelihood function as constants.

The proposed approach has broad applications. It can be applied to improve the logistic

regression models with the model interpretability maintained, especially for class imbalance

problems in highly regulated industries (e.g., anti-money laundering, credit scoring). It

can also be applied to improve the neural network models for learning more complicated

relationships.

3



Chapter 2

Literature Review

2.1 Class Imbalance Problem

2.1.1 Problem Definition

The class imbalance problem is the problem of classifying the imbalanced data with an

unequal target class distribution [3] [36]. In the imbalanced data, many more observations

are labeled by the majority class (i.e. non-event) than the minority class (i.e. event).

One example is the fraud detection problem with more observations in non-fraud than

fraud, where the majority class is non-fraud and the minority class is fraud. Similar to

generic classification problems, the class imbalance problem is usually discussed separately

in two categories: 1) the binary classification with only two target classes; 2) the multi-class

classification with multiple target classes. As the question “whether or not” is asked the

most in the decision making process, the focus of this research is the binary classification.

It can be easily extended to multi-class, since the multi-class classification can be solved by

a sequence of binary ones.

Although there is no standard definition on the imbalance degree for a problem to be

considered as a class imbalance problem, Weiss et. al shows that when the imbalance ratio

is 2:1 or larger, the discrimination abilities of classifiers su↵er from the imbalance nature

of the data, based on a research study of the class imbalance impacts on the minority

class classification performance on 26 binary class datasets [107]. Hence, the imbalanced
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data is considered by most practitioners to be the data where the majority class has twice

as many or more observations as the minority class [43]. It exists in almost every area,

such as customer churn prediction [120] [4], adverse drug reaction detection [93], abnormal

activity recognition [31], network intrusion detection [16], dangerous behavior recognition

[7], machine fault detection [89], sentiment classification [111], software defect prediction

[95], and vedio object detection [32].

In practice, the minority class is usually the class of interest that is more important or

more costly if misclassified, such as fraud in the fraud detection problem [84], malignance

in the breast cancer diagnosis problem [60], and delinquency in the credit scoring problem

[13]. It is expected to di↵erentiate the minority class e↵ectively from the majority class by

a classification model to avoid losses (e.g., money, reputation, health).

2.1.2 Challenging Issue

The standard statistics and machine learning models are biased towards the majority class

and misclassify the minority class as the majority class severely, when trained on the

imbalanced data [101].

To empirically show this issue and provide better understanding on it, Zhang et. al

studied the influence of the event rate (i.e. the proportion of the minority class) on

discrimination abilities of seven bankruptcy prediction models [115]. In the original dataset,

the proportion of bankruptcy observations is 0.12%. Under this event rate 0.12%, models

(e.g., decision tree, gradient boosting, random forest, neural network, support vector

machine, logistic regression) misclassify more than 87% of bankruptcy observations as non-

bankruptcy, as indicated by Type II Error in Table 2.1, which can bring great loss. However,

as the event rate increases to 50% by resampling the data, Type II Error of all models reduce

substantively, as shown in Table 2.2.
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Table 2.1: Performance of Models under Event Rate 0.12%

Model Accuracy F1 Score Type I Error Type II Error Cuto↵

Decision Tree 99.88% . 0% 100% .

Gradient Boosting 99.88% . 0% 100% .

Bayesian Network 64.43% 0.0056 35.59% 17.31% 0.11

Random Forest 86.83% 0.0022 13.08% 87.95% 0.01

Neural Network 99.23% 0.0221 0.65% 92.94% 0.01

Support Vector Machine 99.88% . 0% 100% .

Logistic Regression 99.41% 0.0204 0.47% 95.01% 0.01

Table 2.2: Performance of Models under Event Rate 50%

Model Accuracy F1 Score Type I Error Type II Error Cuto↵

Decision Tree 72.26% 0.7507 38.97% 16.50% 0.28

Gradient Boosting 73.44% 0.7623 38.28% 14.84% 0.42

Bayesian Network 70.53% 0.7413 43.41% 15.53% 0.37

Random Forest 73.93% 0.7656 37.31% 14.84% 0.42

Neural Network 72.75% 0.7579 39.81% 14.70% 0.37

Support Vector Machine 73.23% 0.7605 38.56% 14.98% 0.49

Logistic Regression 72.61% 0.7575 40.36% 14.42% 0.42

Why is the performance of these models driven by the event rate? The reason is that the

standard statistics and machine learning methods are formulated based on two assumptions

to maximize the overall accuracy. First, target classes are equally distributed [51]. Second,

the misclassifications of all target classes are equal [86]. However, both of these assumptions

are violated on the imbalanced data. This can be reflected by results under the event rate

0.12% in Table 2.1, where the overall accuracy of most models is 86% or higher but more

than 87% of bankrupty observations are misclassified as non-bankruptcy.
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2.1.3 Solution Methods

Because of significant and broad applications of class imbalance problems, researchers have

made e↵orts to improve solutions in the past decades. Based on the workflow of the

classification process, the proposed solutions are summarized in four categories, including

input data, feature, algorithm, and output data.

1. Input Data: Sampling

Sampling methods modify the data to achieve a balanced target class distribution,

including random oversampling [9], random undersampling [27], synthetic minority

oversampling technique (SMOTE) [40] [11], and the integration of sampling and

boosting [59]. The oversampling increases the number of observations in the minority

class, while the undersampling reduces the number of observations in the majority

class, as shown in Figure 2.1, where the circle denotes the majority class and the

triangle denotes the minority class.

Figure 2.1: Sampling

2. Feature

(a) Feature Selection

Feature selection methods first rank the importance of all features (i.e. in-

dependent variables) based on statistical metrics (e.g., information gain, chi-

square, and odds ratio for categorical variables; pearson correlation coe�cient,

feature assessment by sliding thresholds, and signal-to-noise correlation coe�cient
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for continuous variables) and then select a subset of important features by a

heuristic search procedure (e.g., random, genetic search) [106] [87]. It is a

generic technique in machine learning and data mining for identifying the most

discriminatory features in the high-dimensional data and reducing the overfitting,

but its importance has been better explored for class imbalance problems that

are often accompanied by the high-dimensional issue, such as text classification

and bioinformatics applications [118] [112] [68] [79] [70] [119]. For example, the

feature selection method significantly improved the performance of Support Vector

Machine model in predicting protein function from sequence, combined with the

undersampling [1].

(b) Variable Discretization

Variable discretization methods transform continous variables into categorical

variables in an unsupervised or supervised way [26]. Unsupervised techniques

discretize continuous variables based on the distance or frequency without

considering the target class information. Supervised techniques incorporate the

target class information and determine the discretization boundaries based on

statistical metrics (e.g., entropy, Gini, and the Hellinger measure) [58]. It is a

generic data mining technique, but it has recently shown success in mitigating

the model bias in class imbalance problems from multiple domains in a study

conducted by Zhang et. al [116].

3. Algorithm

(a) Cost-Sensitive Learning

Cost-sensitive learning applies di↵erent misclassification costs to observations in

the training procedure, based on their class or their attribute values, by penalizing

the learning objective function (e.g., log-likelihood function) that is used for

estimating models [78] [8]. To mitigate the bias caused by the fact that the

observations of the minority class are less than the majority class, misclassification

costs of the minority class are set to be larger than the majority class, as shown in

Figure 2.2. Di↵erent from sampling methods in Figure 2.1, no data modification is
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made. In Section 2.2.2, the penalized log-likelihood functions for the imbalanced

data in the literature are cpmprehensively reviewed.

Figure 2.2: Cost-Sensitive Learning

(b) Ensemble Learning

Ensemble learning trains multiple models based on subsets of training data and

aggregates the results of all models to make the final prediction to improve

the accuracy by reducing the model variance and/or bias. Depending on how

the training sample is selected for each model, ensemble learning is divided

into the bagging-based methods [17], boosting-based methods [56], and hybrid

methods [71]. The bagging approach randomly selects a subset sample of the

training data, while the boosting approach selects the training sample based on

the result in the previous iteration and increases the weights of observations

that are misclassified. The generic ensemble learning process can be improved

specifically for class imbalance problems by combining with other strategies (e.g.,

cost-sensitive, undersampling, oversampling) [30].

(c) Other Methods

Other methods include active learning, kernel-based learning, and one-class

learning. Active learning allows the model to actively select training data yielding

better performance from a large number of unlabeled data [114] [121] [35]. Kernel-

based learning methods project the data into high-dimensional space and can be

applied to class imbalance problems with kernel modifications adjusting the class

boundary [24] [110]. One-class learning, also called novelty detection, utilizes one

class of observations and is very useful for extremely imbalanced data [75] [66].
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4. Output Data Level: Thresholding

Thresholding is defined to be the process of determining the decision boundary of a

tunable parameter [45]. It can be applied to the probability cuto↵ for converting the

continuous estimated probabilities to binary decisions (0 or 1) [61] [113]. It can also

be applied to an internal hyperparameter of an algorithm, for example, the splitting

criteria in the decision tree [45].

2.1.4 Performance Measurements

For class imbalance problems, some traditional performance measurements (e.g., accuracy)

do not serve as good indicators of discrimination abilities of models [88]. He et. al suggests

to provide a comprehesive assessment by combining curve-based measurements (e.g., receiver

operating characteristic curve, precision-recall curve) and single-value measurements (e.g.,

Type I Error, Type II Error, F1 Score) [42].

To generate the single-value measurements, a choice of the threshold or probability cuto↵

should be made by the analysts to convert a predicted probability from the continuous model

output into a binary decision for classifying whether an observation is positive or negative.

The ones with the predicted probabilities smaller than the cuto↵ value are classified to be

negative (i.e. non-event), while the ones with the predicted probabilities greater than or

equal to the cuto↵ value are classified to be positive (i.e. event). Single-value measurements

can be changed by a di↵erent cuto↵, which make them less objective than the curve-based

measurements. In contrast, curve-based measurements show the overall model performance

under all possible probability cuto↵s.

The definitions and computations of the performance measurements in the following text

will be illustrated based on the example of test data in Table 2.3. It contains 10 observations

with their true class in the column “True Class” and their predicted probability for the

positive class by the model in the column “Predicted Probability”.
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Table 2.3: An Example of Test Data

Observation ID True Class Predicted Probability

1 0 0.09

2 0 0.15

3 1 0.34

4 0 0.45

5 0 0.51

6 0 0.62

7 1 0.78

8 0 0.82

9 1 0.85

10 0 0.90

1. Confusion Matrix

A confusion matrix counts the number of observations in four classification outcomes

(i.e true positive, false positive, true negative, and false negative) by comparing the

predicted class labels and the actual class labels, as shown in Table 2.4. It assumes

that the minority class is the positive class coded as 1, while the majority class is the

negative class coded as 0 [69].

Table 2.4: Confusion Matrix

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

All single-value measurements are calculated based on the confusion matrix. Given

the outcomes in Table 2.4, the following performance measurements can be computed.

True positive rate (TPR) is the proportion of actual positive observations that are

correctly predicted over all actual positive observations, as defined in Eq. 2.1. It is
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also called sensitivity, recall, and power. Its value ranges from 0 to 1 – the higher, the

better. A high TPR is more important when it matters more to correctly identify the

positive case (e.g., fraud in the fraud detection problem).

True Positive Rate (Sensitivity, Recall, Power) =
TP

TP + FN
(2.1)

False negative rate (FNR) is the proportion of actual positive observations that are

falsely predicted to be negative over all actual positive observations, as defined in

Eq. 2.2. It is also called Type II Error. Its value ranges from 0 to 1 – the smaller, the

better. It is an equivalent metric of TPR.

False Negative Rate (Type II Error) =
FN

TP + FN
(2.2)

True negative rate (TNR) is the proportion of actual negative observations that are

correctly predicted over all actual negative observations, as defined in Eq. 2.3. It is

also called specificity. Its value ranges from 0 to 1 – the higher, the better. A high

TNR is more important when it matters more not to miss a negative case (e.g., normal

in the spam detection).

True Negative Rate (Specificity) =
TN

FP + TN
(2.3)

False positive rate (FPR) is the proportion of actual negative observations that are

fasely predicted to be positive over all actual negative observations, as defined in

Eq. 2.4. It is also called Type I Error. Its value ranges from 0 to 1 – the smaller,

the better. It is an equivalent metric of TNR.

False Positive Rate (Type I Error) =
FP

FP + TN
(2.4)

Accuracy is the proportion of actual positive and negative observations that are

correctly predicted over all observations, as defined in Eq. 2.5. Its value ranges from
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0 to 1 – the higher, the better. It is a proper metric when it is equally important to

classify the positive and the negative correctly.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)

Precision is the proportion of actual positive observations that are correctly predicted

over all observations that are predicted to be positive, as defined in Eq. 2.6. Its value

ranges from 0 to 1 – the higher, the better. It is usually considered together with the

recall.

Precision =
TP

TP + FP
(2.6)

F1 score is the harmonic mean of the precision and recall, as defined in Eq. 2.7. Its

value ranges from 0 to 1 – the higher, the better. A good model should have a high

precision as well as a high recall, leading to a higher F1 score.

F1 Score = 2⇥ Precision⇥ Recall

Precision + Recall
(2.7)

For Table 2.3, assuming that the probability cuto↵ is chosen to be 0.7, the predicted

class of each observation can be found in Table 2.5.
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Table 2.5: Predicted Classes under Probability Cuto↵ 0.7

Observation ID True Class Predicted Probability Predicted Class

1 0 0.09 0

2 0 0.15 0

3 1 0.34 0

4 0 0.45 0

5 0 0.51 0

6 0 0.62 0

7 1 0.78 1

8 0 0.82 1

9 1 0.85 1

10 0 0.90 1

By comparing the true classes and the predicted classes, we have the following

outcomes.

• True Negative (TN): Observations 1, 2, 4, 5, and 6.

• False Negative (FN): Observations 3.

• True Positive (TP): Observations 7 and 9.

• False Positive (FP): Observations 8 and 10.

The resulting confusion matrix can be found in Table 2.6. The single-value performance

measurements are computed and summarized in Table 2.7.

Table 2.6: Confusion Matrix of the Example Test Data

Actual Positive Actual Negative

Predicted Positive 2 2

Predicted Negative 1 5
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Table 2.7: Single-Value Performance Metrics

Performance Metrics Equation Computation Resut

TPR TP
TP+FN

2

2+1

0.67

FNR FN
TP+FN

1

2+1

0.33

TNR TN
FP+TN

5

2+5

0.71

FPR FP
FP+TN

2

2+5

0.29

Accuracy TP+TN
TP+TN+FP+FN

2+5

2+5+2+1

0.70

Precision TP
TP+FP

2

2+2

0.50

F1 Score 2⇥ Precision⇥Recall

Precision+Recall

2⇥ 0.5⇥0.667
0.5+0.667 0.57

2. Receiver Operating Characteristic Curve (ROC Curve) and Area under ROC

A ROC curve shows how the true positive rate (i.e. sensitivity) and the false positive

rate (i.e. 1�specificity) change as the probability cuto↵ changes. Better models achieve

higher true positive rate when false positive rate is lower, which is reflected in the plot

by showing ROC curve closer to the upper-left corner, leading to a larger area under

the ROC curve (AUROC or AUC). Hence, a larger AUROC indicates better model

performance. The ROC Curve and AUROC are well established metrics [39] [82] and

not sensitive to the prior distribution of the target classes [10], making them ideal for

the imbalanced data.

A ROC curve is constructed by the following steps. The resulting ROC Curve for the

test data in Table 2.3 can be found in Figure 2.3.

a) Sort observations in the ascending order of their predicted probabilities for the

positive class.

b) Use the predicted probability of each observation in the test data in turn as the

probability cuto↵. For observations with the predicted probability greater than
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or equal to the probability cuto↵, classify them as positive; otherwise, classify

them as negative. Then count TP, FP, TN, and FN. And further compute TPR

and FPR, as shown in Table 2.8.

c) Plot TPR and FPR under all probability cuto↵s, as shown in Figure 2.3.

Table 2.8: Constructing ROC Curve for the Example Test Data

Probability Cuto↵

0.09 0.15 0.34 0.45 0.51 0.62 0.78 0.82 0.85 0.9 1

TP 3 3 3 2 2 2 2 1 1 0 0

FP 7 6 5 5 4 3 2 2 1 1 0

TN 0 1 2 2 3 4 5 5 6 6 7

FN 0 0 0 1 1 1 1 2 2 3 3

TPR 1.00 1.00 1.00 0.67 0.67 0.67 0.67 0.33 0.33 0.00 0.00

FPR 1.00 0.86 0.71 0.71 0.57 0.43 0.29 0.29 0.14 0.14 0.00

Figure 2.3: ROC Curve of the Example Test Data
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3. Kolmogorov-Smirnov Chart (KS Chart) and KS Statistics

A KS chart shows the di↵erence between the cumulative percentage of positive ob-

servations and the cumulative percentage of negative observations by only considering

observations in the top ranks of predicted probabilities, where the maximum di↵erence

is called KS statistics. Compared with the ROC curve, it is a more proper metric for

how the models correctly classify observations with high predicted probabilities (e.g.,

target customers for marketing campaign).

A KS chart is constructed by the following steps.

a) Sort the observations in the descending order of their predicted probabilities for

the positive class. The resorted data for Table 2.3 can be found in Table 2.9.

b) Split observations in 10 equal sized bins based on their predicted probabilities.

b) For each bin/rank, compute the number of positive observations ( # positive),

the number of negative observations cum (# negative), the percentage of

positive observations (% positive), the percentage of negative observations (%

negative), the cumulative percentage of positive observations (cum % positive),

the cumulative percentage of negative observations (cum % negative), and the

di↵erence between cum % positive and cum % negative, as shown in Table 2.10.

c) Plot cum % positive and cum % negative on the y-axis and the rank on the x-axis,

as shown in Figure 2.4. KS statistics is 0.38.
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Table 2.9: Observations in Descending Order of Predicted Probability for Positive Class

Observation ID Predicted Probability True Class

10 0.9 0

9 0.85 1

8 0.82 0

7 0.78 1

6 0.62 0

5 0.51 0

4 0.45 0

3 0.34 1

2 0.15 0

1 0.09 0

Table 2.10: Constructing KS Chart for the Example Test Data

Rank # Positive # Negative % Positive % Negative Cum % Positive Cum % Negative Di↵

1 0 1 0.00 0.14 0.00 0.14 -0.14

2 1 0 0.33 0.00 0.33 0.14 0.19

3 0 1 0.00 0.14 0.33 0.29 0.05

4 1 0 0.33 0.00 0.67 0.29 0.38

5 0 1 0.00 0.14 0.67 0.43 0.24

6 0 1 0.00 0.14 0.67 0.57 0.10

7 0 1 0.00 0.14 0.67 0.71 -0.05

8 1 0 0.33 0.00 1.00 0.71 0.29

9 0 1 0.00 0.14 1.00 0.86 0.14

10 0 1 0.00 0.14 1.00 1.00 0.00
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Figure 2.4: KS Chart of the Example Test Data

4. Cumulative Gain and Lift Charts

Cumulative gain is the cumulative percentage of positive observations for the top

percent of the sample ranked by the model, and lift is the ratio of the cumulative

gain between the model and no model [34]. They evaluate the model performance on

a subgroup of the sample (i.e. observations with the top ranked probabilities) instead

of the whole sample, which are widely used in the applications of marketing and sales

[48] [102].

They are constructed in the following steps.

a) Sort the observations in the descending order of their predicted probabilities for

the positive class. The resorted data for Table 2.3 can be found in Table 2.9.

b) Split observations in 10 equal sized bins based on their predicted probabilities.

b) For each bin/rank, compute the number of positive observations ( # positive),

the percentage of positive observations (% positive), the cumulative percentage

of positive observations (cum % positive), and the lift, as shown in Table 2.11.
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c) For the cumulative gain chart, plot cum % positive on the y-axis and % of sample

on the x-axis, as shown in Figure 2.5. For the lift chart, plot lift on the y-axis

and % of sample on the x-axis, as shown in Figure 2.6.

Table 2.11: Constructing Gain and Lift Charts for the Example Test Data

Rank % of Sample # Positive % Positive Cum % Positive Lift

1 0.1 0 0.00 0.00 0.00

2 0.2 1 0.33 0.33 1.65

3 0.3 0 0.00 0.33 1.10

4 0.4 1 0.33 0.67 1.67

5 0.5 0 0.00 0.67 1.34

6 0.6 0 0.00 0.67 1.12

7 0.7 0 0.00 0.67 0.96

8 0.8 1 0.33 1.00 1.25

9 0.9 0 0.00 1.00 1.11

10 1 0 0.00 1.00 1.0

Figure 2.5: Gain Chart of the Example Test Data
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Figure 2.6: Lift Chart of the Example Test Data

5. Probability Cuto↵ Choice

It is important to choose a proper probability cuto↵ to convert predicted probabilities

from the model output to a binary decision (i.e. positive or negative). If a smaller

probability cuto↵ is chosen, the true positive rate (i.e. sensitivity) is high but the true

negative rate (i.e. specificity) is low. If a larger probability cuto↵ is used, the true

negative rate (i.e. specificity) is high but the true positive rate (i.e. sensitivity) is

low. Figure 2.7 shows how the overall accuracy, sensitivity, and specificity change as

the probability cuto↵ increases from 0 to 1. As shown, there is some tradeo↵ between

sensitivity and specificity. The choice of probability cuto↵ depends on application

scenarios or problem objectives. Below are two metrics commonly used by researchers.

a) The first metric is the intersection point of true positive rate plot and true negative

rate plot [38] [85]. It balances Type I Error and Type II Error. The resulting

plot for the example test data in Table 2.3 is shown in Figure 2.7. Based on this

21



metric, the probability cuto↵ is 0.78. If a higher true positive rate (sensitivity) is

preferred, a smaller probability cuto↵ can be chosen.

Figure 2.7: Sensitivity, Specificity, and Accuracy vs. Probability Cuto↵

b) The other metric is the point at the maximum di↵erence between the ROC curve

and the baseline [38], or the highest Youden Index defined in Eq. 2.8. The

resulting plot for the example test data in Table 2.3 is shown in Figure 2.8. Based

on this metric, the probability cuto↵ is 0.78.

Youden Index = sensitivity + specificity � 1 (2.8)
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Figure 2.8: Youden Index vs. Probability Cuto↵

2.2 Maximum Likelihood Estimation

Maximum likelihood estimation is a method of estimating parameters of a model by

maximizing a likelihood function of the observed data [80]. The following sections discuss in

detail how the logistic regression and neural network models are estimated by this method.

2.2.1 Logistic Regression Model Estimation

Logistic regression is a linear model for predicting binary outcomes (e.g., fraud vs. non-

fraud). In logistic regression, the values of input independent variables (i.e. xi0, ..., xin) are

linearly combined, defined in Eq. 2.10, and then transformed by a sigmoid function, defined

in Eq. 2.9, as shown in Figure 2.9.

For clarity, below are the notations used throughout the following text.

m : the total number of observations in the training data

n : the total number of independent variables
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i : the index of observations, i = 1, ...,m

j : the index of independent variables, j = 0, ..., n

xij : the value of the jth independent variable in the ith observation

x

i

: the vector of values of independent variables in the ith observation

yi : the true class label of the ith observation

�j : the estimated coe�cent of the jth independent variable

� : the vector of estimated coe�cents of independent variables

hi : the model output for the ith observation

ŷi : the estimated class label for the ith observation

Figure 2.9: Logistic Regression

hi = ⇡(�T
x
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(2.9)
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�

T
x

i

=
nX

j=0

�jxij = �
0

xi0 + �
1

xi1 + ...+ �nxin (2.10)

with xi0 = 1, which makes �
0

the intercept.

The sigmoid function in Eq. 2.9 restricts the model output between 0 and 1, as shown in

Figure 2.10. The model output is interpreted as the estimated probability of the event

occurrence, considering that the event of the interest (e.g., fraud, delinquency, failure,
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malignant) is always coded as 1 while the non-event (e.g., non-fraud, non-delinquency,

pass, benign) is always coded as 0 [73] [47]. Taking the ith observation as an example,

the probability of the event occurrence is estimated by Eq. 2.11, and correspondingly the

probability of the non-event occurrence is estimated by Eq. 2.12. Mathematically, these two

equations can be equivalently re-written into one equation as Eq. 2.13.

Figure 2.10: Sigmoid Function
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i

)yi(1� ⇡(�T
x

i

))(1�yi) (2.13)

Assuming that all observations are independent, the overall likelihood can be expressed

by the likelihood function in Eq. 2.14, which is the product of the individual likelihood of the

training data. The problem is to identify the model parameters � that maximize the overall

likelihood. To improve the computation e�ciency, the likelihood function is transformed

into its log form in Eq. 2.15, called log-likelihood function. To solve this unconstrained

optimization problem, the most commonly used algorithm is the gradient descent algorithm

[97], where the partial derivative is first computed.
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�

�
mX

i=1

[yi log(⇡(�
T
x

i

)) + (1� yi) log(1� ⇡(�T
x

i

))] (2.16)

Maximizing the log-likelihood in Eq. 2.15 is equivalently minimizing the negative log-

likelihood in Eq. 2.16, which is referred to as the loss function or cost function of logistic

regression. The time complexity for solving Eq. 2.16 is O(n) by the gradient descent

algorithm [28]. First, the partial derivative on �j is derived in Eq. 2.17. It is updated

iteratively by the rules in Eq. 2.18, where ↵ is the learning rate for �j. The learning rate is a

hyperparameter tuned by users. The gradient descent algorithm is summarized in Algorithm

1.
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(2.17)

�j,NEW = �j,CURRENT � ↵
@(�LL(�))

@�j,CURRENT
(2.18)
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Algorithm 1: Gradient Descent Algorithm for Logistic Regression

Data: x
i

, yi, 8i 2 [1,m];↵.

Result: �j, 8j 2 [0, n].

initialize �j, 8j 2 [0, n];

while not reaching the maximum number of iterations do

for j 2 [0, n] do

compute the partial derivative of �j in Eq. 2.17 using the current values of �j ;

update �j based on Eq. 2.18.

end

end

2.2.2 Penalized Log-likelihood Objective Functions for Logistic

Regression

The loss function in Eq. 2.16 can be interpreted in two parts. The first part �yi log(⇡(�Txi))

is the misclassification costs for event observations (i.e. yi = 1), while the second part

�(1�yi) log(1�⇡(�Txi)) is the misclassification costs for non-event observations (i.e. yi = 0),

shown in Eq. 2.19. Because the misclassification costs are not penalized di↵erently for events

and non-events, this objective function essentially maximizes the overall accuracy.

costi =

8
><

>:

�yi log(⇡(�T
x

i

)), if yi = 1

�(1� yi) log(1� ⇡(�T
x

i

)), if yi = 0
(2.19)

However, as Kubat et. al pointed out, the overall accuracy is not a valid and e↵ective

performance measurement for the imbalanced data [62]. In the imbalanced data, the number

of observations in the majority class (i.e. non-events) is usually two times of the minority class

(i.e. events) or more [43]. By maximizing the overall accuracy, logistic regression tends to be

biased towards the majority class and misclassifies events as non-events severely [107] [86]

[43]. For example, in an empirical study on the influence of the event rate on discrimination

abilities of bankruptcy prediction models, when the event rate (i.e. the proportion of

bankruptcy observations) is 0.12%, the accuracy of logistic regression model is 99.41%, but its
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