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insight about data distribution [8]. But all these techniques where all the dimensions are kept do 

not help a lot in data exploration and analysis. It is impractical to visualize the data with high 

dimensions, hence dimension reduction has to be performed for an intuitive visualization. There 

are many ways to perform dimension reduction using PCA, MDS, Isomap, LLE, neural 

networks, SVD etc…We choose to compare PCA, SVD and deep learning techniques in this 

study. 

Research work in [9] clearly states about the challenges faced by big data visualization 

like real-time scalability, perceptual scalability and interactive scalability. Summary of all these 

challenges include data being large, even with visualization it is difficult for a human to extract 

meaningful data, limited screen availability because of which everything cannot be seen, 

limitation of data size or storage to visualize, complex querying may freeze or crash the 

visualization systems. 

Dimension reduction is the most common step used for data reduction and extracting 

information from big data. Few dimension reduction techniques have the ability to remove the 

correlation among the data variables and few others have data divided among the clusters which 

simplifies the process of data analysis. Reducing the dimensions to 2 or 3 helps in improved 

visualization. For example, scatter plots shown in Figure 2. 

 

      

Figure 2: Two scatter plots of random datasets in 3-D space 

 

A scatterplot is a point projection of the data into 2D or 3D space and one of the most 

used visualization methods [8]. Visualization in 3D space shown in Figure 2 is so clear and it is 
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further easy to predict about any new data in these type of plots. This can be easily explained 

using an example scenario using breast cancer dataset. 

Breast cancer dataset 

 
Table 1: Attribute information for breast cancer dataset 

 

Number of Attributes : 9 

Number of classes : 2 

Number of Samples : 699 

 

Attribute Information: 

 

1. Clump Thickness 

2. Uniformity of Cell Size 

3. Uniformity of Cell Shape 

4. Marginal Adhesion 

5. Single Epithelial Cell Size 

6. Bare Nuclei 

7. Bland Chromatin 

8. Normal Nucleoli 

9. Mitoses 

 

   Benign or Malignant – Classes 

 

 

Table 1 gives the details about breast cancer dataset such as number of dimensions and number 

of classes it has.  
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Figure 3: Snapshot for breast cancer dataset 

 

Figure 3 shows initial few samples from breast cancer dataset, it gives us an idea on how data 

looks like. Classes are labeled as 0 or 1 instead of malignant and benign to serve as input for 

dimension reduction technique. The breast cancer data with 9 dimensions is chosen to be reduced 

to 3 dimensions for better visualization with the help of Principal Component Analysis, one of 

the dimension reduction techniques. 

 

Two classes malignant and benign for breast cancer dataset are shown as blue circles and red 

squares in Figure 4. It is clear from Figure 4 that the two classes are easily differentiable and 

separable. That is the perfect advantage of visualization. Now Figure 5 talks about new data 

points whose class is unknown and those are shown in a different color (black). 
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Figure 4: 3D scatter plot for breast cancer dataset with PCA 

 

 

         
Figure 5: New data with unknown classes (in black circles) in breast cancer dataset 

 

Class labels for four samples from the original reduced dataset are made unknown for the 

purpose of making visual decision. The resultant dataset plot is shown in Figure 5 where the four 

black circles represent unknown class samples. But from the visualization in Figure 5, class can 
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be easily predicted based on examining the cluster to which this unknown class sample belongs 

to. This simple illustration with the help of Figure 6 makes us understand the value and benefits 

of visualization.  

At the end, in order for an effective and intuitive visualization, data dimension reduction is 

considered to be an important step. At the same time, quality of dimension reduction and quality 

of visualization has to be ensured for efficient data analysis. So, visualization of high 

dimensional data preserving the original data’s intrinsic structure is the motive behind this 

research. 

   

1.3 Problem Statement  

Preserving the structure of data after dimension reduction plays an important role when dealing 

with big data. Though there are many techniques for reducing dimensions, it is necessary to 

check that data is reduced with minimum loss of information. If there is much loss in structure or 

meaning of data, the original motive of analyzing the data with lower dimensions may not be 

achieved properly. This work is an effort to research and propose a new approach to address this 

kind of problem. 

 

During literature search, we identified a list of common limitations among past research efforts. 

These limitations are summarized as follows:  

 

 Lack of thorough research that compare traditional approaches with deep learning 

approaches in terms of dimension reduction. In particular, most efforts are effective to 

compare linear techniques with non-linear techniques for dimension reduction. However, 

they are complete different type of research and may not be related to deep learning. 

 No evidence is provided in the research about maintaining the structure and originality of 

data after reducing it from higher dimensions to lower dimensions. Also very few strategies 

are provided in order to achieve the same. In particular, there is no effort of formally 

specifying the methods to show that the data structure is preserved after dimension 

reduction.  
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Given the obtained literature search results, we define the problem statement for this thesis as 

follows: 

This research work addresses common limitations found in past research efforts by executing 

an in-depth study of dimension reduction, provides visualization for high dimensional datasets 

while keeping the original data structure, in order to evaluate, an approach to check the 

information loss for original data after reducing dimensions is designed, and the proposed 

approach makes the comparison easier. 

 

1.4 Research Methodology 

The research methodology comprised of an intensive literature review of different articles 

consisting of information on big data, machine learning, deep learning, linear and non-linear 

dimension reduction, deep learning techniques. The research methodology involves the 

following activities: 

1) Conduct literature search on existing comparison reviews for dimension reduction and 

their performance. 

2) Study and analyze collected information to understand how different techniques perform 

on data after application and reducing dimensions. 

3) Develop deep belief networks, a technique which is proposed for comparison but non-

existing in HPCC deep learning module. 

4) Propose an approach to check whether the loss of information is minimum for the data 

after dimension reduction.  

5) Evaluate the proposed approach against different dimension reduction techniques for 

comparison. 

 

1.5 Contribution 

The objective of this thesis is to conduct an in-depth comparison of various types of dimension 

reduction techniques like PCA, SVD, Stacked Auto Encoders, Deep Belief Networks; study of 

existing methodologies for dimension reduction; develop an approach to check the information 

loss after reducing the dimensions; evaluate the proposed approach.  

 

The work addresses the stated problem statement by performing the following tasks:  
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1) Conduct Literature Search and Develop Deep Belief Networks 

i. Conduct literature search on existing deep belief network implementations in other 

platforms and check for their accuracy. It has to be replicated in HPCC.  

ii. Conduct literature search on different linear and non-linear data dimension reduction 

techniques. An approach has to be determined for checking whether the structure of data 

is preserved. 

iii. The author will compose a survey of compiled papers related to this topic and document 

the findings. 

 

2) Develop an Algorithm and Approach   

i. The algorithm for Deep Belief Networks is implemented and tested for accuracy. 

ii. The developed algorithm is tested with the given input datasets to reduce their 

dimensions and visualized in a 3D space to analyze further. 

iii. An approach is determined for checking the structure of data after reducing the 

dimensions. 

 

3) Get Datasets 

i. Suitable datasets are gathered to perform experiments.   

ii. 5 datasets with more than 30 dimensions to datasets having 6 dimensions are considered 

for the research. Each dataset is different from its perspective. Basically they all have 

different characteristics, hence considered for testing. 

 

4) Comparison Study 

i. Perform simulations for all the techniques and use the unsupervised clustering, entropy 

determination and visualization approach for better comparison. 

 

5) Dissemination of Results 

i. Disseminate the results for ease of access and understanding. The source code will be 

available upon request, but this is at the discretion of the author. 

ii. Prepare and submit one or more papers for publication at related venues 
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In the next Chapter, we present literature review for all the dimension reduction techniques that 

are used for comparative study.  
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CHAPTER 2 

 

Literature Review 

 

2.1 Overview 

Many research works have been done in the past to compare dimension reduction techniques [10, 

11, 12, 13, 14] and other works are presented in related work section 3.2. This Chapter presents a 

literature review of different dimension reduction techniques and their recent applications.  

 

2.2 Dimension reduction techniques 

Upon literature review, we consider two traditional approaches and two deep learning 

approaches for comparison. We list below all the four approaches used for comparison in this 

paper. 

 

SVD (Singular Value Decomposition):  

Singular Value Decomposition is a matrix factorization method. Formally, if there is a dataset 

with m*n dimensions, there exists a factorization called singular value decomposition of M, of 

the form  

     M = UΣV*  

where U is a unitary matrix, Σ is a diagonal matrix with non-negative real numbers on the 

diagonal and V is a unitary matrix. The diagonal entries of Σ are known as singular values of M. 

 

“Singular value decomposition components of a matrix U, Σ and V can be multiplied together to 

recreate the original matrix exactly. However, if only a subset of rows and columns of matrices 

U, Σ, and V are used, then those lower-order matrices U, Σ, and V provide the best 

approximation of the original matrix in the least square error sense. Because of that, SVD can be 

seen as a method for transforming correlated variables represented by columns of the original 

matrix into a set of uncorrelated variables that better expose relationships that exist among the 

original data items. SVD can also be used as a method for identifying and ordering the 

dimensions along which data points exhibit the most variation.“[15] 
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PCA (Principal Component Analysis): 

 “Principal Component Analysis is a mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called ‘principal components’. The number of principal 

components is less than or equal to the number of original variables. This transformation is 

defined in such a way that the first principal component has the largest possible variance (that is, 

it accounts for as much of the variability in the data as possible), and each succeeding component 

in turn has the highest variance possible, under the constraint that it is orthogonal (meaning 

uncorrelated with) to the preceding components.” [15] 

 

DBN (Deep Belief Networks):  

Deep Belief Networks is a probabilistic generative model composed of multiple layers of 

stochastic, hidden variables [16]. Before knowing about deep belief networks, it is important to 

know about Restricted Boltzmann Machines (RBMs) because RBMs are stacked to form so 

called Deep Belief Network. In 2006, Hinton showed that RBMs can be stacked and trained in a 

greedy manner to form DBNs. DBNs are graphical models which learn to extract a deep 

hierarchical representation of the training data.  

 

RBMs use an algorithm called “Contrastive Divergence” instead of traditional back propagation 

to learn and prepare a model. The Contrastive Divergence algorithm works in two phases namely 

positive and negative phases. In positive phase, the input vector ‘v’ is clamped to the input layer 

and is propagated to hidden layer in a similar manner to feed forward neural networks and obtain 

a result ‘h’. In negative phase, the result ‘h’ from positive phase is propagated back to the visible 

layer, obtains a result v’ and the new result is again propagated to hidden layer with activation 

result h’. 

 

After the positive and negative phases, weight is updated as:  

    w(t+1) = w(t) + α(vhT – v’h’T)  

where α is the learning rate and w, v, v’, h, h’ are vectors. 
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Figure 6: Restricted Boltzmann Machine –Image is copied from [16] 

 

The intuition behind the algorithm is that the positive phase reflects the network’s internal 

representation of the real world data. Meanwhile, the negative phase represents an attempt to 

recreate the data based on this internal representation. The main goal is for the generated data to 

be as close as possible to the real world and this is reflected in the weight update formula. In 

other words, the net has some perception of how the input data can be represented, so it tries to 

reproduce the data based on this perception. If its reproduction isn’t close enough to reality, it 

makes an adjustment and tries again [17].  

 

There are different representative works using Restricted Boltzmann Machines like Deep Belief 

Networks, Deep Boltzmann Machines, Deep Energy Models [18]. One of the works “Deep 

Belief Networks” is further discussed. 

 

Figure 7 is a representation for deep belief network. These deep belief networks are often quite 

powerful producing impressive results. 
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Figure 7: Deep Belief Network – Image is copied from [16] 

 

DBNs model the joint distribution between observed vector ‘x’ and the ‘l’ hidden layers hk as 

follows: 

 

  
where x = h0, P(hk-1|hk) is a conditional distribution for the visible units conditioned on the 

hidden units of the RBM at level k, and P(hl-1|hl) is the visible-hidden joint distribution in the 

top-level RBM.  

 

Despite these impressive characteristics of deep belief networks that suits for reducing 

dimensions, we also mentioned few papers in the related work – section 3.2 that explicitly 

discussed deep belief networks for dimension reduction. 

 

Stacked Auto-encoders:   

Stacked auto-encoders are best used for unsupervised learning as it is good in capturing 

hierarchical groups, that is primary layers of the network learns higher level features and as we 

go deeper in network, it tries to learn lower level features in deep learning that replaced the 

learning techniques used in conventional neural networks.  
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Stacked Auto-encoders as the name suggests is a stack of auto-encoders. They are also referred 

to as Stacked Auto-Associators as they try to associate the output with the input and try to find 

intermediate representations [19]. Traditionally, in stacked auto-encoders output from one auto-

encoder is treated as input for the next auto-encoder and this process repeats till all the individual 

auto-encoders in the network are pre-trained [20]. The result at the output layer is with reduced 

dimensions. There are different variations in auto-encoder like Sparse Autoencoder, Denoising 

Autoencoder, Contractive Autoencoder [18]. For dimension reduction, we do not consider the 

attribute sparsity because the original dimensional space is reduced but not expanded. 

 

   Table 2: Comparison between RBMs and autoencoders  

Properties RBMs Autoencoders 

Generalization Yes Yes 

Unsupervised Learning Yes Yes 

Feature Learning Yes Yes 

Real-time training No  Yes 

Real-time prediction Yes Yes 

Biological Understanding No No 

Theoretical Justification Yes Yes 

Invariance No No 

Small training set Yes Yes 

 

Table 2 is the comparison study between only two deep learning techniques restricted boltzmann 

machines and autoencoders. It is extracted from [18] where the comparison is performed among 

different other deep learning techniques also. From the comparison it is clear that deep learning 

techniques do not depend on invariance at all whereas the traditional techniques depend on 

variance and orthogonal transformations. 

According to [21], research on dimension reduction has taken many sides like it can be done 

with projections or making use of neural networks or similar data or fractality. Our paper 

discusses dimension reduction from the sides of projections and neural networks. It is also stated 

in [21] that linear techniques like PCA have more time complexity and space complexity of 

o(m2), so they have designed an optimized RBM approach with dynamic hidden layers to show 
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the better results on MNIST [18] database. Our RBM approach uses fixed number of hidden 

layers but achieves good results after trying multiple combinations but work accomplished in 

[21] is optimized by using dynamic hidden layers. 

 Apart from dimension reduction, deep learning techniques can be used for classification 

purposes also which is illustrated in [19, 22]. In [22], abstraction feature of DBN is combined 

with back propagation strategy for classification. A slight variation of auto-encoders is used to 

solve the classification problem with minimal errors in [19] and performance gap is reduced 

when compared to DBN.  

 

The advantages of deep learning techniques over traditional techniques are: 

 It uses unsupervised training which eliminates the need of labels for training. 

 Local optima can be prevented. 

 Data can be separated more easily. 

 Meaningful representations can be made. 

 

Due to the growing research on non-linear dimension techniques, which necessarily need not be 

deep learning techniques but may be variations of PCA like Kernel PCA and others like LLE, 

HLLE etc…one may have the intuition that non-linear techniques are more preferred to linear 

techniques. But through research conducted in [23], it may be clear that it is not always non-

linear techniques that prevail. For datasets with a lot of noise and lot many outliers, non-linear 

techniques are not best suitable. Table 3 gives categorization of all the dimension reduction 

techniques that makes linear, non-linear, traditional and deep learning terminologies clear. 

 

Table 3: Categorization of dimension reduction techniques 

Reduction Technique Type of suitable data Type of technique 

PCA Linear Traditional 

SVD Linear Traditional 

Deep Belief Networks Linear and Non-linear Deep Learning 

Stacked Autoencoders Linear and Non-linear Deep Learning 
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For deep learning techniques, if there is one hidden layer and linear with certain nodes, then the 

projection is similar to PCA. If the hidden layers are non-linear, then there can be different kinds 

of abstraction which lead to better results [4]. 

 

Linearity and non-linearity mostly differ in the cost function used in respective approaches. In 

traditional PCA and SVD approaches, it’s just the matrix factorization involved which is linear. 

But in other non-linear techniques and deep learning techniques complex functions are used to 

deal with non-linear data. 

 

Though it is learnt that there are many techniques for performing the task of dimension 

reduction, it is important to realize how to reduce the dimensions. Dimension reduction involves 

two important steps namely variable selection and feature extraction [24]. All the approaches 

discussed in this paper PCA, SVD, deep belief networks and stacked auto-encoders are feature 

extracting methods. They concentrate on finding the best features from given set of high 

dimensional space which represent the original data. It can be found based on variance if it is 

traditional approach or based on abstraction property if it is deep learning technique. 

 

In the next Chapter, we introduce approach on how to check whether the structure of original 

data after dimension reduction is preserved. 
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CHAPTER 3 

 

K-means Clustering based Approach, Dimension Reduction, 

Visualization and Entropy Determination 

 

3.1 Overview 

This Chapter introduces the works done by different authors and strategies used for comparison 

in Section 3.2. Next we introduce the approach on entropy determination after finding the good 

‘k’ value, reducing the dimensions and then performing the clustering of reduced data to check 

the entropy of which technique is low. However, the goal is to visualize high dimensional data in 

a 3D space intuitively while keeping the original data structure as much as possible. Thus 

proposed approach helps in realizing our goal. Benefits of dimension reduction and visualization 

are given with an example in chapter 1 under motivation. The design details and strategy used 

for comparison in this paper is clearly given in Section 3.3. Section 3.4 is to list out the benefits 

of proposed approach when compared to existing approaches and section 3.5 explains how the 

reduction is performed with each of the dimension reduction techniques.  

 

3.2 Related Work  

In [3], a comprehensive comparative study of 12 linear and non-linear techniques are used for 

dimension reduction. Testing is performed on artificial and natural datasets. Evaluation criteria 

used is based on generalization errors in classification tasks. K-nearest neighbor classifier is 

employed because of its high variance. It is believed by the authors that high variance helps in 

judging the structure of the data. They also chose generalization errors rather than reconstruction 

errors because no conclusion can be drawn when the reconstruction error is high, it may  not 

mean that dimension reduction did not perform well. Finally based on the experiments it is 

concluded in the paper that in spite of high variance exhibited by non-linear techniques, they are 

not much better when compared to traditional PCA for many datasets that do not rely on local 

properties.  

 

Some relevant works on dimension reduction [4, 10, 11 and 25], some related works on 

visualization [13, 26, 27 and 28] and many others are shown in Table 4. These works use 
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dimension reduction with different techniques. Deep Belief Networks and PCA comparison for 

dimension reduction with evaluation criteria being sum of squared errors difference between 

original one and reconstructed one is provided in [4]. A new non-linear algorithm is proposed 

based on eigen-value face decomposition in [10] and is compared with PCA. A non-linear 

generalization for PCA which uses a encoder and decoder network is used in [11], it is a neural 

network based dimension reduction and root mean squared error is the evaluator. Stacked auto 

encoders are used for dimension reduction in [25] where it is concluded that, they are not only 

good at reducing but also in finding repeated structures. Again a new non-linear algorithm 

named “Distinguishing Variance Embedding (DVE)” is designed combining the concepts of 

maximum variance unfolding and Laplacian Eigenmaps in [29]. In this paper, the criteria used 

for preserving data structure in Laplacian Eigenmaps like sum constraint is improved with strict 

local preserving constraints which is achieved by maximizing global variance for constraints 

obtained in Laplacian Eigenmaps. In the illustration, 2-dimensional and 3-dimensional 

embeddings show that the original local neighborhood is preserved and also in images instance, 

some features are clearly distinguished. 

In few of the works where visualization itself is used for evaluation, it is difficult to verify the 

quality of visualization. A new metric based on pairwise correlation of the geodesic distance is 

proposed in [23]. In order to prove that the proposed metric performs better on many dimension 

reduction techniques, they compared it with several other metrics like Euclidean distance, 

spearman distance etc… 

 

Our work is mainly focused on comparing the traditional approaches with deep learning 

approaches for dimension reduction. We focus on visualization of every dataset after reduction 

and try to validate our analysis based on visualization with the help of entropy. 

In contrast to earlier work, our proposed approach gives a better way to visualize and check the 

loss of information using entropy determination. Entropy is used in machine learning algorithms 

such as decision trees to find the information gain, it is one of the powerful criteria to check on 

loss of information [30].  

 

 

Table 4: COMPARISON OF RELATED WORK 
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Work Reduction Techniques Datasets Evaluation Criteria 

Noulas et al. 

[4] 
Deep Belief Network 

AR Face 

Database [17] 

Difference between sum of squared 

errors of original and reconstructed 

one 

Gering [10] 
Eigen Value Face 

Decomposition 
Random Faces Reconstruction Accuracy 

Teli [11] 
Neural Network 

(Encoder – Decoder) 

MNIST [18], 

USPS, Olivetti 

Face Dataset 

[19] 

Root Mean Square Error 

Maaten et al. 

[12] 

PCA, Isomap, MVU, 

Kernel PCA, Diffusion 

Maps, Autoencoders, 

LLE, Laplacian Eigen 

maps, Hessian LLE, 

LTSA, LLC, Manifold 

Charting 

Artificial and 

Natural 

Datasets 

K-nearest neighbor generalization 

error 

Tsai 

[13] 

PCA, MDS, LSA, 

Isomap, LLE, HLLE, 

LTSA 

Blog Entries Visualization and finding outliers 

Claveria et.al 

.[14] 

CATPCA (categorical 

PCA), MDS 

Tourist 

Destinations 

(categorical 

data) 

Trending tourism is analysed in top 

10 world destinations which is shown 

graphically  

Wang et al. 

[25] 
Stacked Auto-encoders 

Synthesized 

Data,  MNIST 

[18], Olivetti 

Face Dataset 

[19] 

Visualization 

Venna et.al. 

[26] 

PCA, MDS, LLE, 

Laplacian Eigenmap, 

HLLE, Isomap, CCA, 

CDA, maximum 

variance unfolding, 

LMVU, local MDS 

Plain s-curve 

dataset, noisy 

s-curve 

dataset, mouse 

gene 

expression, 

gene 

expression 

compendium, 

sea-water 

temperature 

time series 

Neighborhood Retrieval Visualizer 

Najim et.al. 

[27] 

PCA, CCA, CDA, 

Trustworthy Stochastic 

Proximity Embedding 

and 17 other linear and 

non-linear methods 

Synthetic data  

(curved 

cylinder), 

Tensor 

colored image 

dataset 

Quality of visualization using 

residual variance, correlation 

function and local continuity 

Dzwinel et.al. 

[28]  

nr-MDS (variant of 

MDS) 

MNIST [18], 

Reuters  
Interactive Visualization 

Wang et al. 

[29] 

Distinguishing 

Variance Embedding 

Synthetic Data 

(helix, Swiss 

roll, Punctured 

Sphere, Twin 

Peaks, 

Gaussian) and 

Strict local distance-preserving 

constraints 
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Work Reduction Techniques Datasets Evaluation Criteria 

Image 

Datasets 

(COLI-20 

Database [28], 

MNIST [18]) 

Our approach 

PCA, SVD, Deep 

Belief Networks, 

Stacked Auto encoders 

KDD 1999 

Cup Data, 

Breast Cancer, 

Cover Type 

K-means clustering approach, finding 

entropy and visualization. 

 

 

3.3 Unsupervised Approach for Evaluating Performance of Dimension Reduction With 

Respect To Visualization 

Ideally, we can take the original dataset with any number of dimensions, use any of the 

dimension reduction techniques to make it low dimensional data and then visualize it. But in 

order to visualize high-dimensional data in an intuitive way, we need to reduce the dimensions to 

three but at the same time ensure that whether reduced data is having same structure as the 

original data, for which we use entropy to evaluate. This approach involves unsupervised k-

means approach to group the data and evaluation using entropy determination, then comparison 

is performed. A step wise approach is shown in the Table 5.    

 

   Table 5: Step-by-Step procedure for reduction and evaluation 

Step 1. Examine the data, preprocess the data if required 

Step 2.  Run k-means on it with wide range of k-values. 

Step 3. Determine the suitable k-value for the dataset.  

Step 4. Discard the original labels and assign cluster numbers as labels for all the samples.  

Step 5.  Perform dimension reduction for original data. 

Step 6. Visualize the data in 3D space. 

Step 7. Using the new cluster labels, find the entropy for the reduced data to evaluate and to compare. 

     

The value of entropy in Step 7 of Table 5 talks about the amount of loss of information, if the 

entropy is low then the loss is less. Thus entropy can be used as a measure to evaluate the quality 

of clustering [31] and also dimension reduction. 
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Our idea is to find the entropy values of reduced dataset by repeating the procedure explained in 

Table 5 for different dimension reduction techniques and then compare the entropy score. The 

lowest entropy score recorded for the dataset with the reduction technique used is chosen as the 

best approach for dimension reduction. It may again vary on type of data, sparsity, relations 

among data etc…This evaluation and result discussion is clearly stated with the help of 

experimental study in chapter 4 and detailed step-by-step explanation is provided in this section. 

 

Step 1. Examine the data, preprocess the data if required. 

It is not possible to have real time data within a specific range. Real time data usually falls under 

a large range and also there may be possibility of categorical values. In order not to give 

weightage for any specific attribute while using classification or clustering algorithms or in 

neural networks, preprocessing the data acts as an important step. Preprocessing may involve 

steps like normalization or standardization. Table 6 explains major differences between 

normalization and standardization. 

 

Table 6: Difference between normalization and standardization 

Normalization Standardization 

Used when maximum and minimum values 

of the dataset are known. 

Used when maximum and minimum values 

of the dataset are unknown. 

Standard deviation and variance are not 

involved. 

Standard deviation and variance are 

involved. 

Data after normalization is bounded within a 

range [32]. 

Data after standardization may not be 

completely bounded. 

 

We use normalization for preprocessing the data for all the studied experiments since keeping 

data in a specific range is very important for all the algorithms used in comparative study. 

Normalization is specifically important before clustering because if there is a large variation 

among the values of attributes, one attribute may dominate over the other, hence the motive is to 
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balance all the attributes without giving weightage to any attribute in specific [40]. It is 

completely user’s choice to decide on which kind of normalization technique or rule has to be 

applied for specific dataset [33].  

The kind of normalization chosen for this study is called min-max normalization. Using min-max 

normalization ensures data is in the range of 0 to 1. There are two min-max normalization forms 

again which are stated as in Table 7. 

 

Table 7: Two forms of min-max normalization 

Min-max normalization form 1 [32] (X-Xmin)/(Xmax-Xmin) 

Min-max normalization form 2 [34] [(X-Xmin)/(Xmax-Xmin)]*(newXmax-

newXmin)+newXmin 

 

In Table 7, 

‘X’ refers to the data point 

 Xmax refers to the maximum value of X 

 Xmin refers to the minimum value of X 

newXmax refers to maximum value of the interval range in which X has to be 

newXmin refers to minimum value of the interval range in which X has to be 

Techniques used for normalization will transform the original data but it should be confirmed 

that no noise is introduced in the original data [34]. Data transformation is usually linear in 

normalization approaches. More about normalization forms used for different datasets is 

presented in chapter 4. 

 

Step 2. Run k-means on it with wide range of k-values. 

The concept of k-means can be simply stated as “Use the data to move the centers” and “Use the 

centers to move the data” [35]. K-means is used for data that do not have labels and is a kind of 

unsupervised approach. It clusters the data based on the algorithm. ‘k’ in k-means refers to the 

number of clusters. Algorithm taken from [36] shown in Figure 8 clearly explains the basic 

concept of k-means clustering approach. 
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   Figure 8: Algorithm for k-means [36] 

 

The process of k-means is performed through a set of scala statements for the purpose of this 

study as scala has better options for machine learning library. Scala statements used for running 

k-means is shown in Table 8. 

 
Table 8: Scala Statements for running k-means 

 

def distance(a: Vector, b: Vector) =  

     math.sqrt(a.toArray.zip(b.toArray). 

        map(p=>p._1-p._2).map(d=>d*d).sum) 

 

def distToCentroid(datum: Vector, model: KMeansModel) = { 

     val cluster = model.predict(datum) 

     val centroid = model.clusterCenters(cluster) 

     distance(centroid, datum) 

} 

 

 

import org.apache.spark.rdd._ 

import org.apache.spark.mllib.clustering._ 

 

def clusteringScore(data: RDD[Vector], k:Int) = { 

    val kmeans = new KMeans() 

    kmeans.setK(k) 

    kmeans.setRuns(10) 

    kmeans.setEpsilon(1.0e-6) 

    val model = kmeans.run(data) 

    data.map(datum=>distToCentroid(datum, model)).mean() 

} 

 

(1 to 12 by 1).map(k=> (k, clusteringScore(data, k))).foreach(println) 
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In Table 8, 

distance – function to calculate distance between two points 

distToCentroid – function to calculate distance between data point and centroid 

clusteringScore – function that helps in choosing the best ‘k’ value based on the clustering score. 

It sets ‘k’ value, sets the epsilon value that controls the movement of centroid in a cluster and 

also runs kmeans for 10 times to get a model. 

data – input dataset in form of Vector. 

 

Last statement in Table 8 prints the clustering score for a wide range of values specified based on 

step size (in this example, series goes like 1, 2, 3, 4,….., 11, 12 as step size is 1 and range 

specified is 1 to 12). 

 

Figure 9 gives an idea of output for last scala statement (clustering score for wide range of ‘k’ 

values) in Table 8. 

 

       
 
Figure 9: Clustering Score for random dataset 

 

Now since we have clustering score for wide range of ‘k’, next step is to choose best ‘k’. It is 

very important to choose the best ‘k’ as it decides the best clustering. 

 

Step 3. Determine the suitable k-value for the dataset.  

One basic idea to choose the best ‘k’ is by observing the sharp change in clustering score. An 

easy way to determine the elbow or the sharp decrease is by plotting a graph. The elbow 

technique of choosing ‘k’ is taken from [31]. Figure 10 is the graph plotted for the data in Figure 

9. 



35 

 

 

 
Figure 10: Graph for clustering score and wide range of k 

 

From the Figure 10, a sharp decrease is observed at k-value ‘2’. So the best k-value is chosen to 

be ‘2’ for some random dataset that has clustering scores for wide range of ‘k’ as shown in 

Figure 9. 

 

Step 4. Discard the original labels and assign cluster numbers as labels for all the samples.  

After choosing the best ‘k’ value, k-means algorithm has to be run again on the original dataset 

with best ‘k’ chosen and same parameters that are used for choosing ‘k’. 

 

Again a set of scala statements are used to run the k-means algorithm on the original dataset and 

predict the new clusters for the given data. Table 9 gives a piece of scala code to run k-means 

algorithm individually. 

 
Table 9: Scala statements to run k-means with best chosen ‘k’ 

 

import org.apache.spark.mllib.clustering._ 

 

val kmeans = new KMeans() 

kmeans.setK(2) 

kmeans.setRuns(10) 

kmeans.setEpsilon(1.0e-6) 

 

val model = kmeans.run(data) 

val sample = data.map(datum => 

model.predict(datum) + "," + datum.toArray.mkString(",") 

) 
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sample.saveAsTextFile("/user/pchenna/clustered_data”) 

 

 

Code in Table 9 is not much different from code represented by using clusteringScore function in 

Table 8. Earlier, function is called multiple times for different values of ‘k’ but here k-means run 

for the best chosen ‘k’ (in this case k=2 as per step 3).  

 

Once k-means is run with all the parameters set, model obtained is used to predict the cluster 

number for each sample in the original dataset. At this point, we believe that good clustering is 

performed with best determined ‘k’. In other words, all the homogenous samples are grouped 

together. So, we choose to deal with cluster numbers as labels rather than the original labels in 

further process. Hence as a last thing in Step 4, original labels are discarded and cluster numbers 

(cluster to which sample belongs to) are assigned as labels to all the samples in the original data. 

 

“model.predict(datum)” in Table 9 predicts the cluster to which the sample belongs to, based on 

k-means model. After prediction, data with new cluster labels is saved in a folder called 

“clustered_data” from where it can be retrieved. 

 

Step 5. Perform dimension reduction for original data. 

In this step, original data dimensions are reduced to 3 using different reduction techniques. More 

about the dimension reduction techniques used and obtaining the data with reduced dimensions 

using each of the techniques is discussed in section 3.5. 

 

Step 6. Visualize the data in 3D space. 

In order to compare the different dimension reduction techniques, we choose visualization as a 

tool. Reduced dimensional data with each of the techniques is visualized in 3D space. Even after 

data reduction by dimension, there should not be much loss of information and structure. Thus 

visualization gives a better idea to the user about the intrinsic structure of data after reducing it to 

3 dimensions. Benefits of visualization are already discussed in chapter 1.  

 
Step 7. Using the new cluster labels, find the entropy for the reduced data to evaluate and to compare 
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Though visualization gives us better idea about the structure of the data when realized in 3D 

space, yet it is sometimes difficult to compare different visualizations. There has to be a way 

using which closer visualization for data can be differentiated. We have found that entropy as a 

measure which does its best job in this aspect. Further details in this Step speak about the 

calculation of entropy and how entropy is used to compare the quality of dimension reduction. 

  
Table 10: Dummy dataset details for entropy calculation illustration 

 

Let us assume a dummy dataset with 

 

Number of samples – 10 (say s1, s2, s3,……s10) 

Number of classes – 2 (c1, c2) 

Number of attributes – not needed for calculating entropy (can be any number) 

 

Assume k = 3 for the above dataset (best chosen ‘k’ after running k-means) 

 

Dataset after running k-means may look like: 

 

Sample 

Number 

Assigned 

Label 

S1 L1 

S2 L2 

S3 L1 

S4 L2 

S5 L3 

S6 L2 

S7 L3 

S8 L2 

S9 L2 

S10 L3 

 

 

 

 

As shown in the Table 10, dataset is assumed to have 10 samples or records. Each sample may 

have ‘n’ attributes where ‘n’ is unknown (not required for this illustration). Originally dataset 

had 2 labels (or classes) but after running k-means for wide range of ‘k’, it is determined that 

k=3 is good for the given dataset (this is assumed as it is dummy dataset). Dataset table in Table 

10 is how the samples are assigned to three clusters after running k-means algorithm. Figure 11 

shows the clustered samples. 
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       Figure 11: Clustering for dummy dataset 

 

It is clearly seen from Figure 11 that there are 3 clusters with each cluster containing 

homogenous samples. Now Figure 12 shows the clustering result after performing the reduction 

(using any reduction technique).  

 

 
Figure 12: Clustering for dummy dataset after reduction 

 

It is again clear from Figure 12 that there are 3 clusters but this time clusters do not contain 

homogenous samples. It is bit different from the original result. Hence we use weighted cluster 

entropy to check how the data structure is preserved. 
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Equation 1: Individual Cluster Entropy Formula 

   

 In Equation 1,   

  P(S, j) refers to proportion of instances in cluster ‘S’ that belong to class label ‘j’ 

  C refers to number of class labels 

 

Entropy in Equation 1 is the individual entropy for each cluster. Aggregate entropy or final 

entropy for the data after reduction is calculated using the formula given in Equation 2. 

 

 

  
 

Equation 2: Aggregate or Final Entropy Formula 

 

In Equation 2, 

 |C| refers to number of samples in all the clusters 

 |Cj| refers to number of samples in cluster Cj 

 L refers to number of clusters 

 Entropy(Cj) refers to individual entropy calculated using Equation 1 for each cluster Cj 
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Figure 13: Entropy Calculation Results in ECL 

 

Figure 13 shows the results obtained for calculating entropy using ECL.  

Figure 13(a) is the input dataset with 10 samples. There are 3 labels (l1, l2, l3) and 3 clusters (c1, 

c2, c3). 

Figure 13(b) is the count of number of samples in each of the 3 clusters. 

Figure 13(c) is the count of samples with some label ‘l’ that belong to some cluster ‘c’. There is 

one sample labeled ‘l1’ in cluster ‘c1’, five samples labeled ‘l2’ in cluster ‘c2’, one sample 

labeled ‘l3’ in cluster ‘c2’ etc… 

Figure 13(d) is the intermediate result in calculating individual entropy for each cluster. 

Figure 13(e) shows individual entropy for each cluster. 

Figure 13(f) is the intermediate result in calculating aggregate entropy. 

Figure 13(g) is the final entropy or aggregate entropy. 

 

Value of entropy always measure between 0 to 1. If entropy is low, it means that the amount of 

information loss is less and structure of the data is preserved. But if the entropy is high, it means 

that the data structure is not preserved after dimension reduction. When all the clusters contain 

homogenous data, entropy is ‘0’.  
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3.4 Proposed Approach Vs Existing Approach 

From related work in Table 4, it is clear that many of the research works use reconstruction as a 

step to evaluate the structure of data after dimension reduction. After reconstructing or 

approximating the reduced data to original dimensions, error is computed which can be 

reconstruction error or root mean squared error or reconstruction accuracy. But as stated in [12], 

reconstruction error may not always suitable for checking the local structure of the data. Higher 

reconstruction error may not result in poor dimension reduction always.  

 

Every technique has its own algorithm to reconstruct the reduced data to original data. For 

instance, if PCA is considered, say ‘Z’ is the reduced data, then approximated original data say 

‘X’ is given by the matrix product of Ureduce and Z. The time complexity for calculating the 

approximate matrix or reconstructed matrix is same as the original algorithm. If stacked auto-

encoder is taken as another instance, during reduction process, the network learns its 

representation in an encoded form by compressing the data and extracting only the important 

features required. But during expansion process or reconstruction, decoding is performed which 

is again repeating the whole algorithm. In real-time, network architecture is usually deep which 

means encoding and decoding process takes a lot of time and practically infeasible. Hence this 

process of encoder-decoder is performed for auto-encoders because they may not have deep 

architectures but for stacked auto-encoders, it is really a complex process to repeat the same and 

even if we refer to the evaluation in [25], it is just visual comparison. Similarly reconstruction 

process is a tedious process in other approaches also like SVD and Deep Belief Networks. But 

the evaluation cannot be performed by just reconstruction, squared error difference is calculated 

between the original data and the reconstructed data which is treated as a measure for 

comparison. So, this kind of evaluation involves many steps and may take longer time in case of 

real-world big datasets. 

 

In the proposed approach, we use k-means algorithm to check the clustering before and after 

reduction and use the cluster labels for calculating the entropy. Running k-means is scalable and 

easy even for big data. In real-world datasets, we do not have original labels which means 

unsupervised methods are essential for analysing such data sets. K-means is one of the best 

unsupervised approaches which helps in finding the similar data and it is reasonably fast except 
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in its worst case. Key part in k-means algorithm is choosing ‘k’ which plays a significant role. A 

method to choose ‘k’ is also given in the proposed approach.  

 

Thus, we choose unsupervised clustering based approach to evaluate structure of the data after 

reduction rather than complex process of reconstruction.  

 

3.5 Dimension Reduction Approaches for Comparative Study With Respect To 

Visualization  

SVD (Singular Value Decomposition): 

As mentioned in chapter 2, in order to reduce the dimensions for the original data, we need to 

take the subset of rows and columns of U, Σ and V to get the lower order matrices.  

If we need to reduce the data from ‘n’ dimensions to 3 dimensions, then  

Uprime = Use only initial 3 columns for U and 

Σprime = Use only 3 values for Σ 

Now the lower order matrix or 3-dimensional data for the original data is given by Uprime* Σprime 

Figure 14 takes an example of some random data with two dimensions and it is reduced to one 

dimension using SVD. 

 

Figure 14: ECL Results for SVD for random dataset 

 

Figure 14 (a) - matrix representation for input data with 2 dimensions 

Figure 14 (b) - input dataset with two dimensions in ECL output form 

Figure 14 (c) - unitary matrix U in singular value decomposition factorization 
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Figure 14 (d) - diagonal matrix Σ in singular value decomposition factorization 

Figure 14 (e) - unitary matrix V in singular value decomposition factorization 

Figure 14 (f) - unitary matrix Uprime, lowered from U considering only first column 

Figure 14 (g) - diagonal matrix Σprime, lowered from Σ considering only one value 

Figure 14 (h) - Product of Uprime and Σprime that gives the reduced data with one dimension 

Figure 14 (i) - Matrix representation for Figure 14 (h) 

 

PCA (Principal Component Analysis): 

Again little introduction to PCA is already given in chapter 2. But here, description is given on 

how to reduce the data to 3 dimensions. 

We need to consider initial 3 principal components from the ‘n’ principal components that are 

obtained after running PCA for the original dataset. The reduced principal components or subset 

of principal components is represented as “Ureduce”. Now the reduced dataset is given by the 

product of original matrix with Ureduce which is X * Ureduce.  

Here X has dimensions as number_of_samples * number_of_dimensions and product of X and 

Ureduce is 3-dimensional in our scenario. 

Figure 15 takes an example of some random data with two dimensions and it is reduced to one 

dimension using PCA. 

 

Figure 15: ECL results for PCA for random dataset 

 

Figure 15 (a) - input dataset with two dimensions in ECL output form 

Figure 15 (b) - two principal components for the two dimensional dataset 

Figure 15 (c) - one principal component which is Ureduce (reduced form of Figure 15 (b)) 

Figure 15 (d) - Two dimensions in the original dataset reduced to one dimension 
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DBN (Deep Belief Networks): 

 

DBN is spoken technically in terms of its algorithm in chapter 5. Using the same algorithmic 

approach, this section explains how dimension reduction is performed. 

 
Figure 16: ECL results for DBN for random dataset 

 

Figure 16 (a) input dataset with four dimensions in ECL output form 

Figure 16 (b) parameters used and their values for executing DBN 

Figure 16 (c) Learnt Model for the given input with weights and bias (complete model is not 

shown in the figure, only part of it is presented) 

Figure 16 (d) Final output with reduced dimensions to three from original four 

 

     

Figure 17: Network architecture for DBN 
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Now using Figure 16 and Figure 17, dimension reduction using DBN can be explained. The 

dataset used is just for illustration purposes. Hence it has less number of samples and 

dimensions. Thus, the architecture is shallow like 4 nodes in the input layer, 3 nodes in hidden 

layer and 3 nodes in output layer. For the real-time datasets it may be deeper than the 

architecture specified in Figure 17.  The number of dimensions to which the original dataset 

should be reduced depends on the architecture specified. Here the architecture is 4-3-3. Thus the 

output from DBN is 3-dimensional whereas the input fed to it is 4-dimensional. The learning 

technique called contrastive divergence used in DBN, getting the final output and every other 

detail about how algorithm works is mentioned in chapter 5. Since the batch_size is mentioned as 

2 (from Figure 16), input data is processed as 3 batches with each batch having 2 samples.  

 

Stacked Auto-encoders: 

Stacked Auto-encoders work very similar to DBN in terms of stacking but the algorithm or 

learning technique is different. Auto-encoders are stacked together to form stacked auto-

encoders. Again dimension reduction is same, the number of dimensions to which the original 

dataset should be reduced depends on the architecture specified. 

 

 

Figure 18: ECL results for stacked auto-encoders for random dataset 

 

Figure 18 (a) input dataset with five dimensions in ECL output form 

Figure 18 (b) parameters used and their values for executing stacked auto-encoders 

Figure 18 (c) Learnt Model for the given input with weights and bias (complete model not shown 

in the figure, only a part of it is presented) 

Figure 18 (d) Final output with reduced dimensions to three from original five 
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Figure 19: Network architecture for Stacked Auto-encoders 

 

Network architecture chosen for running stacked auto-encoders is 5-4-3 for given random 

dataset. There is no particular rule to choose the network architecture or the number of nodes in 

each of the layers. For the real-time datasets, number of experiments are performed and the best 

parameters and network architecture is presented and same is used for comparison. Since the 

number of nodes in output layer is 3, the reduced data or output has 3-dimensions.  

 

In the next chapter, real-time datasets are used for dimension reduction with all the four 

approaches (two traditional and two deep learning). Comparison results along with visualization 

are also presented in the following chapter. 
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CHAPTER 4 
 

Experimental Study 

 

4.1 Overview 

In this Chapter, we demonstrate example datasets for dimension reduction with the proposed 

approach discussed in Chapter 3 and using HPCC deep learning module. We evaluate the results 

and produce a conclusion about which dimension reduction technique is suitable and gives best 

results for the datasets used.  Moreover, we demonstrate our approach clearly with outputs 

obtained at each step.  

 

Datasets used for illustration are Ionosphere [37], Breast Cancer Wisconsin (Original) [38, 39], 

Wine [40, 41], Shuttle Landing Control [42] and Ecoli [43]. For each dataset, results of all four 

dimension reduction techniques are produced and finally comparison is performed. 

 

Table 11 shows the number of attributes, number of classes, number of instances, normalization 

details for all the datasets but in further sections details are provided more clearly. 

 

Table 11: Datasets and relevant information 

Datasets Number of 

Dimensions 

Number of 

classes 

Number of 

instances 

Normalized or 

Original 

Ionosphere [37] 34 2 351 Original 

Breast Cancer 

Wisconsin 

(Original) [38, 39] 

9 2 699 Normalized using 

min-max 

normalization form 2 

Wine [40, 41] 13 3 178 Normalized using 

min-max 

normalization form 1 

Shuttle Landing 

Control [42] 

6 2 278 Normalized using 

min-max 

normalization form 1 

Ecoli [43] 7 8 336 Original 

 

Table 11 gives an idea that datasets with different characteristics are considered and chosen for 

experimental study. 
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4.2 Dataset 1: Ionosphere 

This contains radar data collected by a system in Goose Bay, Labrador [44]. Snapshot of data is 

presented in Figure 20. Since the data is within a specific range [-1, 1], original data is used for 

reduction. Normalization is not required for such data since there are no extreme values that may 

have more weight over the other while running the algorithm.   

 

 

Figure 20: Snapshot of Ionosphere Dataset 

 

Since normalization is not required, our next step is to find the good value for ‘k’ by running k-

means over a wide range of ‘k’ say 1 to 20, as original classes are just 2, this range would be 

sufficient.  

 

Figure 21: Clustering Score and its graph for Ionosphere dataset 

 


