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ABSTRACT 

 

Self-oxidation of coals can result in spontaneous combustion events at any time during 

mining, transporting, or processing, causing environmental, economical, and safety concerns. 

The total global primary coal production as of 2012 was 8.7 billion tons. Of that, 1.1 billion tons 

of coal was mined in the US, which accounts for 41% of the domestic electricity production. 

Spontaneous coal combustion, although dependent on coal rank, is a naturally occurring 

phenomenon that often causes damage to industrial and commercial facilities and freight, 

reduces the caloric value of coal, can release noxious gases and particulate matter, and increases 

CO2 pollution levels locally and globally. Through the self-oxidation process, as heat 

accumulates, the internal temperature of the coal continues to rise over time and if left unaltered 

will lead to spontaneous coal fires. Thus there is a definite need for means to suppress this 

process. In this study, we investigated methods of spontaneous coal combustion inhibition. 

During experimentation, coal was ground into a fine dust (500 microns in diameter) and treated 

with inorganic phosphate and sulfonate salts combined with anionic and non-ionic surfactant 

blends. Each ingredient was applied to the surface of unreacted coal in combination, 

systematically varying the concentrations of each component, to reach a cost-effective and 

efficient formulation. Multiple approaches including thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) were used to analyze these effects. Results showed these 

novel formulations can reduce spontaneous combustion potential, making coal more thermally 

stable. Mechanisms by which these formulations inhibit coal spontaneous combustion are 

proposed.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Coal Classification and Ranking 

Coal is a substantial resource that has been exploited by for its uses as fuel and 

heat source. Coal consists of organic material that is remnants of organic life that has 

undergone millions of years of deposition and compaction. This matrix of carbonaceous 

material was subjected to increasing heat and pressure below the Earth’s surface. This 

caused physical and chemical changes in the organic matter, transforming it into coal.1 

The quality of each coal deposit is determined by the amount of fixed carbon within the 

matrix and is dependent upon the depths of the burial, temperature and pressure at those 

depths, and the length of time the coal deposit has been forming. The degree of change 

over time undergone by a coal as it matures from lignite to anthracite is known as 

coalification.2 Coalification has an important bearing on coal's physical and chemical 

properties and as a result is referred to as the rank of the coal.2 Ranking is determined by 

the degree of transformation of the residual organic matter into carbon. The ranks of 

coals, from those with the least carbon to the most carbon, are lignite, sub-bituminous, 

bituminous and anthracite.  

Early in the coalification process, lignite deposits are formed under the Earth’s 

crusts at low depths. In comparison to other coals, lignite is quite soft and its color can 

range from dark black to various shades of brown. Since this coal type has undergone the 
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shortest amount of time during the formation process and has not been subjected to high 

heat and pressure as compared to higher ranked coals, it is thought to have low organic 

maturity.3 

If coalification is allowed to progress over many more millions of years, the 

continuing effects of temperature and pressure produces further change in the lignite, 

progressively increasing its organic maturity and transforming it into the range known as 

'sub-bituminous' coal. Further chemical and physical changes occur until these coals 

become harder and blacker, forming the bituminous type coals. Under the right 

conditions, the progressive increase in the organic maturity can continue, finally forming 

anthracite.2 

In addition to carbon, coals contain hydrogen, oxygen, nitrogen and varying 

amounts of sulfur. High-rank coals are high in carbon but low in hydrogen and oxygen 

and therefore have a high heat content. Low-rank coals are low in carbon but are high in 

hydrogen and oxygen content therefore have a lower heat content. The heat content is 

measured in the number of British thermal units (Btu) per pound of coal. This value is 

particularly important for electricity and steel production. The heat content of coal is 

determine by the amount of energy generated through combustion to raise one pound of 

water one degree Fahrenheit known as one Btu.4 For example, one pound of coal that has 

a heat content of 8000 BTU can raise 8000 pounds (lbs) of water by 1 °F. The 

significance of the heat content of the coal is the amount of energy available per pound of 

coal. Energy is produced by coal combustion which generates steam that drives turbines 

that create mechanical energy in the form of electricity.  
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Low-rank coals, such as lignite and subbituminous coals, are typically softer, 

brittle materials with a dull, earthy appearance. They are characterized by high moisture 

levels and low carbon content, and therefore a low energy content. Higher rank coals are 

generally harder and stronger and often have a black luster. They contain more carbon, 

have lower moisture content, and produce more energy. Anthracite is at the top of the 

rank scale and has a correspondingly higher carbon and energy content and a lower level 

of moisture.2 

Coal can be found throughout various regions of the country. Lignite, 

characterized by high moisture content and low carbon content, can be found in low-lying 

regions especially in coastal areas throughout the southern, gulf coast region of the 

contiguous states. Sub-bituminous coal is found primarily in the western parts of the 

country. Values of moisture, carbon, and heat content of sub-bituminous type coals fall 

between lignite and bituminous type coals but are still characterized by high moisture 

levels and low carbon content. The Powder River Basin (PRB) which comprises of 

northeast Wyoming and southeast Montana produced 407 million tons of sub-bituminous 

coal which equals 41.4% of total coal production in the U.S. in 2013.5 The demand for 

coal out of this region is high due to the low sulfur content and moderate heat content. 

Typical sulfur percentages range between 0.2%-0.6% for PRB coal. Burning coal with 

low amounts of sulfur reduces the amount of H2S and SO2 released into the atmosphere 

and reduces the costs associated with removing sulfur during the burning process. 

Bituminous type coals are typically found in interior regions of the U.S. where organic 

maturity is the greatest. Coal in these regions of bituminous deposits has been subjected 
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to long periods of heat and pressure compacting the organic material into a dense layer of 

carbon. These regions include Appalachian deposits and Interior Basin deposits. 

 

1.2 Coal’s Influence in Society 

Coal has become a significant part of modern society. It is a substantial natural 

resource and is widely consumed for electricity, iron, steel, and concrete production as 

well as other industrial uses.  In 2013, world coal production reached approximately 8.69 

billion short tons (mass unit used by the coal industry equal to 2000 lbs) and generated 

41.0% of the world’s electricity needs. The U.S. produced nearly 11.7% of the world 

total at 1.02 billion short tons ranking them the second largest world coal producer. China 

ranks highest in total coal production at 4.02 billion short tons.6  

 

   

Figure 1. Total World and U.S. Electricity Generation by Fuel in 20137 

 

Coal is available in many regions across the world and is a relatively cheap form 

of energy. Coal is valuable commodity due to its higher energy density (8000 - 15000 
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Btu8) and low production cost (as of April 3, 2015, Powder River Basin Coal sells for 

$11.55 per short ton and Northern Appalachian Coal is $61.15 per short ton9). Not only is 

it cheap, coal can be easily transported and stored. Coal is expected to steadily increase in 

demand due to increasing world production of electricity and steel for years to come. 

Since 2008, world production has increased nearly 16.3% from 7.47 billion tons to 8.69 

billion tons in 2013.6 

Although coal has many beneficial uses, the U.S. Environmental Protection 

Agency (EPA) has stringent guidelines to help protect human health and prevent 

environmental damage. In the mining stages of production, workers are confined in 

spaces with increased carbon monoxide (CO) and methane (CH4) concentrations and are 

exposed to heavy metals such as mercury and lead. There are numerous other concerns 

such as fire hazards and gas or dust explosion hazards, but over the last 40 years with 

help from the EPA and Mine Safety and Health Administration (MSHA), improvements 

in risk assessment and safety have been made. Stringent policies on waste disposal and 

air pollution have been implemented to reduce contamination of natural water resources 

and improve air quality. When coal has a high sulfur content, during the combustion 

process, large volumes of SO2 (sulfur dioxide) are released and have to be filtered out of 

the exhaust to limit the release of pollutants. Large volumes of CO2 (carbon dioxide) are 

released as a product of coal combustion and have contributed to the increase in global 

CO2 concentration.10 Even with improvements in safety and risk assessment, a common 

problem with low grade coals such as lignite and especially sub-bituminous type coals is 

spontaneous fires.11 
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Figure 2. Sub-bituminous Coal that has Spontaneously Combusted 

 

Figure 2 shows an example of a spontaneous combustion event on a sub-bituminous coal 

bed. Through coal processing, the self-oxidation of coal, especially early in the 

production process, has created many naturally-occurring fires, some of which have been 

burning for over one hundred years.12 In order to better understand this phenomenon, we 

must understand how spontaneous heating occurs. 
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CHAPTER 2. COAL OXIDATION AND SPONTANEOUS  

COMBUSTION INHIBITION 

 

2.1 Concept of Spontaneous Heating 

At ambient temperatures, the self-oxidation of coal is a thermodynamically 

spontaneous reaction, which means that it does not need an external source of energy to 

progress. Due to complex physical and chemical processes, the rise in internal coal 

temperature can take hours to days depending on the susceptibility of the coal to undergo 

oxidation and thermal decomposition at low temperatures (20°C – 150°C).13 These series 

of parallel reactions are mostly exothermic. The rate at which this occurs varies due to 

inherent properties of the coal such as moisture, fixed carbon, volatile matter, mineral 

content, and physical structures of the coal matrix such as porosity or available surface 

area.14 All of these factors are to be considered when determining the coals tendency to 

undergo a spontaneous heating event. If the heat is not dissipated, then the increasing 

temperature will lead to self-ignition, resulting in a spontaneous coal fire. 

Due to the recent increased production of mid-grade sub-bituminous coal in the 

U.S., spontaneous coal fires have turned out to be a common phenomenon in mines, 

transport, and storage. This natural phenomenon is an under-estimated problem and in 

recent years has been studied to understand the mechanism15, degree of susceptibility16, 

and methods of inhibition17. The goals of this project are to understand the scope of 
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spontaneous heating, thereby allowing the prediction and control of this process to 

prevent coal fires in the mining, transport, and storage of coal. With this, appropriate 

inhibitors can be selected to slow the oxidative process physically and chemically. 

Physical inhibition generally involves limiting oxygen exposure and increasing the rate of 

heat loss. Chemical inhibitors are thought to be directly involved in the oxidation and 

combustion processes. The resulting additives have a wide range of use and potential for 

reducing the susceptibility of coal to self-igniting. Many methods including thermal 

analysis have been used to assess the success of inhibition spontaneous coal 

combustion.18 

 

2.2 History of Spontaneous Combustion and Research 

Most occurrences of spontaneous coal fires were recorded in the late 19th century 

with the coal industry boom, while many have been recently reported in mining sites12, 

exposed coal seams11, coal deposits, and power stations. Factors that affect the 

susceptibility of spontaneous coal combustion can be controlled during storage and 

transport but may not always be effective, resulting in large fires that are difficult to 

control. Sometimes these fires can take weeks to extinguish due to the amount of coal 

involved (millions of tons).19 This poses a safety concern and an economical concern. 

Large amounts of toxic gases and CO2 are released into the atmosphere and the fire can 

spread easily if not contained. Additionally, there are significant losses in caloric value, a 

need for extra fire combatants, and in extreme cases coal fires can lead to human 

casualties. Thus early detection and prevention of spontaneous coal fires is of great value. 
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In 1908, Samuel Parr was one of the earliest researchers to study the initial stages 

of coal oxidation by quantifying volatile release and oxygen absorption using partial 

pressure and combustibility of gases.13 In a subsequent paper, Parr concluded that freshly 

mined coal absorbs oxygen in a rapid manner that does not result in the formation of CO2 

but rather leads to the incorporation of oxygen into the coal structure.14 His conclusions 

are still a part of the current understanding of the mechanisms of coal oxidation at low 

temperatures. He also was the first to heat coal at a constant rate under an oxidative 

atmosphere to measure temperature changes and was the first to develop a graphical 

representation of the oxidative process for coal.20 

In 1925, J. Davis quantified loss of caloric value using calorimetry, focusing on 

the propensity for spontaneous combustion rather than oxygen absorption.21 These 

studies identified several key parameters that influence the process such as coal rank, 

particle size, and surface area and showed the influence of moisture on spontaneous 

heating.22 It was concluded that coals with high moisture content have pores filled with 

water that cannot absorb oxygen; and dried coals will absorb moisture from the 

environment releasing the heat of condensation, which increases its critical temperature.22 

Over time, contributions from multiple disciplines have tried to understand the 

phenomenon of spontaneous heating with coal. Geologists have quantified mineral 

content and crystal structure23, engineers measured bed temperature, caloric value, and 

fluid dynamics24, while chemists introduced studies of reaction rates and mechanisms 

identifying components involved15. When these results are integrated, a clearer 

understanding of the spontaneous process can be considered.18 
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2.3 Understanding Self-Oxidation 

Understanding the mechanism and kinetics of coal oxidation is fundamentally 

important when trying to understand the spontaneous combustion process. Several 

mechanisms have been postulated at different stages of the oxidation reaction that have 

been useful in kinetic modeling where rate of the reaction are calculated.15 These models 

have been useful to design storage and transport conditions in a variety of environmental 

conditions. However, due to the complexity of the coal matrix and the number of 

variables involved in determining reaction rate, mechanisms are only partially 

understood.  

Coal oxidation is an exothermic process. The heat from oxidation can be either 

lost or retained. Coal will lose heat through three pathways: convection, conduction, or 

evaporation (see Figure 3). Heat lost to the surrounding atmosphere is known as 

convection. Conduction is heat lost to the minerals within coal. These minerals can act 

like a heat sink at levels as low as 5% by weight.25 Heat transferred to the inherent 

moisture and volatile organic compounds within the coal matrix is lost through 

evaporation.  If heat is not dissipated, then coal behaves as an insulator. When the heat is 

retained, the coal temperature will continue to rise, which also increases the rate of 

oxidation in a positive feedback mechanism.  
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Figure 3. Heat Flow During Coal Oxidation 

 

Coal oxidation at low temperatures follows a unique series of reactions when 

compared to the classical combustion reaction.15 These take place between 20 - 150°C 

without the presence of a flame in a very slow processes that continuously releases heat. 

When coal is stored in large stockpiles, the ability of the coal to transfer heat to the 

surrounding atmosphere is limited, creating localized pockets of heat. This heat 

accumulation will then accelerate the rate of the reaction until thermal runaway is 

reached, resulting in high temperature coal combustion and fire.1 

Previous research to establish mechanisms of oxygen absorption include early 

studies showing coal can absorb oxygen without releasing CO2, but rather incorporating 

O2 into the coal matrix.13 Oxygen is initially rapidly absorbed until all catalytic sites are 

occupied then the slow but extensive desorption of oxidation products can give way to 

the rise in water and CO2 as well as an increase in coal bed temperature.16 However, this 

did not explain the mechanism leading to spontaneous combustion. Subsequent research 

was able to demonstrate the formation of normal gaseous oxidation products and the 

reaction rate could be estimated by measuring the heat release rate.18,21 Other researchers 
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were able to show that total weight of a coal sample could increase at low temperatures as 

a measure of oxygen absorption and therefore concluded that the speed of oxidation 

increases with increasing volatile matter.26 

With early successes in research, methods slowly improved. Studies included the 

effect of coal rank16 and temperature on the rate of oxygen consumption27. Results 

supported the theory that the reaction is dependent upon temperature and could be 

modeled using the Arrhenius equation.28 From this research the following mechanism 

was proposed. In the first stage, the external porous surface controls the rate of oxygen 

consumption which initially blocks all active sites, and creates new active sites due to the 

desorption of unstable coal by-products. In the second stage, the available surface 

increases through combined effects of absorption and desorption affecting the reaction 

rate by increasing the coal bed temperature. This is the rate-limiting step of the reaction. 

With increasing temperatures, the rate of oxygen consumption increases. The final stage 

is when the coal has reached a critical temperature and thermal runaway occurs. This 

means that the reaction is feed-forward and continues to release heat and increase the 

temperature in a destructive manner, past the point of no return. 

Experimental work by Wang et al. proposed multi-step mechanisms including gas 

absorption, formation of gaseous and solid products, and thermal decomposition steps.15 

The proposed mechanism starts with the chemisorption of oxygen molecules in the pores 

of the coal surface, forming a group of carbon-oxygen complexes at temperatures 

between ~20 to 70oC. Then, when a slightly higher temperature is reached (~50 to 70ºC), 

these oxygenated complexes undergo a thermal decomposition which contributes to the 

emission of CO and CO2. The reaction of the solid carbon-oxygen complexes also could 

12 
 



create new stable solid products, which can be decomposed at temperatures higher than 

70oC, leaving available new active sites to be used by the reaction. This proposed 

sequence explains how the reaction regenerates the active sites, liberating carbon 

oxides.29 Finally, Wang suggested that two parallel reactions sequences contributed to the 

emission of CO and CO2 during oxidation.15 

 

2.4 Role of Coal Rank on Spontaneous Combustion Potential 

The spontaneous combustion of coal relies on many contributing factors: oxygen 

concentration, temperature, mineral content, inherent moisture, particle size, porosity, 

surface area, chemical composition, and coal rank. It has been determined that 

spontaneous combustion of coal occurs in the final phase of coal oxidation and each 

factor shares some level of contribution to the rate at which this occurs. Thus, the rate of 

oxidation and spontaneous combustion susceptibility vary with coal rank.  

Initially physical interactions at ambient temperatures release heat. Physical 

interactions include coal-oxygen interaction30, volatile organic desorption31, and water 

absorption/desorption32. With increasing temperatures, oxygen can be absorbed in two 

independent pathways proposed by Wang et al. releasing between 80-420 kJ/mol of 

heat.15 These reactions result in increasing coal temperatures leading to combustion 

reactions at high temperatures. The resulting heat release and internal coal temperature 

affects the rate of O2 consumption. However, the structure of the coal matrix along with 

the porosity also directly impacts the rate of O2 consumption. One study investigated the 

characteristics of oxygen consumption of different coal ranks at programmed 

temperatures to model spontaneous combustion susceptibility. Results show that at 
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ambient to low temperatures, oxygen consumption is measurable and trends can be made 

based on coal rank to determine spontaneous combustion susceptibility.16 Low rank coals 

such as lignite showed the highest rate of oxygen consumption which relates to a high 

probability that it will experience a spontaneous combustion event and rates of oxygen 

consumption slowed with increasing rank.16 

Moisture content in the coal sample also has an influence during the oxidative 

process. For freshly mined coal, the inherent water content is proportional to the coal 

maturation reached during its geological formation and requires energy to be removed 

from the coal surface. The water content can produce a dual effect in the coal oxidation: 

A) inhibition by the obstruction of pores and active sites available for the oxidation 

reaction33 or B) enhancing the oxidation process by acting as a catalyst producing heat 

from absorption34. The competition between these phenomena will determine the net 

amount of heat released. When coal interacts with the atmosphere, water can be adsorbed 

or desorbed to reach equilibrium. The physical absorption of water in the coal particles is 

an exothermic process.35 The ability for coal to absorb moisture depends on the porosity 

and internal surface area, which also depends on coal rank. It was found that physical 

absorption of water is much more significant with low rank coals such as lignite and sub-

bituminous type coals due to their higher internal surface area.33 When this absorption 

takes place and the evolved heat is not released, the temperature of the coal bed can rise 

and increase the oxidation rate. For this reason, the relative humidity of the air is a 

significant variable in the process.34 Vapor absorption produces a considerable increase in 

the coal bed temperature, which is enough to start the spontaneous combustion chain 

reaction. This heat is released directly to the coal because the mass of water vapor 
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available to capture the heat is negligible compared to liquid water.34 It means that the 

coal’s capacity to adsorb water or moisture, and the heat released in this process are key 

variables when assessing a coal ability to self-heat. 

Mineral content can have a dual effect in the self-heating phenomenon. With 

regard to self-oxidation, it has been found that some minerals can act as catalysts 

enhancing the reaction.36,37 Pyrites can release heat during oxidation, but some minerals 

such as calcium carbonate, sodium acetate, and potassium acetate can too37. This can 

considerably reduce the activation energy barrier, even if their concentration is small 

(usually in the range of 1 to 5%)37. Conversely, when the concentration of minerals in the 

coal matrix is higher, minerals can act as an inhibitor in the reaction, blocking the active 

sites and acting as a heat sink. This phenomenon usually occurs when the mineral content 

is above 5wt%38, with the exception of some minerals that directly inhibit the reaction, 

such as potassium chloride, sodium chloride37, calcium chloride, and magnesium 

acetate38. The total mineral concentration is normally calculated as the residue remaining 

after burn out, and the inhibitor effect is independent on the chemical composition of the 

minerals when their concentration is higher than 10wt%38. 

The effect of particle size has been studied by several researchers39,40,41. These 

studies have examined a range of sizes from pulverized coal particles to lumps of several 

centimeters. The smallest particle sizes produce the maximum external surface area 

producing an increase in the rate of oxygen consumption41. This increase in the external 

surface accompanying the reduction of particle size is of minor significance, compared to 

the increase in accessible internal surface, which is related directly to the self-oxidation 
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reaction.32 A maximum oxidation rate is reached when kinetic control is achieved, 

particularly for particle sizes in the range below 500 to 100μm.42 

Surface area affects the rate of reaction through the internal porosity of the coal.2 

This porosity is usually a consequence of geological processes. For instance, it is 

understood that lignite and sub-bituminous coals have higher propensity for spontaneous 

combustion. This is explained mainly through the high surface area of this kind of coal, 

which provides a large number of active sites which can react with oxygen, and also 

because these sites are able to absorb moisture. Other contributing factors include the 

higher initial volatile and water content, compared to other types of coal.   

Low coal rank such as lignite and sub-bituminous coals have a high degree of 

spontaneous combustion susceptibility. These two coal types also have greater reactivity 

than higher rank coals due to the composition, volatile content, high porosity and surface 

area, and high affinity to absorb water. This parameter is used by the coal industry as one 

of the main indicators of propensity to spontaneous combustion. Thus the aims of the 

project are to determine mechanisms of inhibition on sub-bituminous type coals due to 

the increased susceptibility to spontaneous combustion for factors previously mentioned. 

 

2.5 Selecting Chemical Inhibitors to Prevent Spontaneous Coal Combustion 

Coal is a complex, chemically reactive material which makes selecting chemical 

inhibitors rather challenging. Researchers have used a variety of inorganic compounds to 

investigate mechanisms spontaneous combustion inhibition as well as ways of preventing 

oxidation. One method in preventing self-heating of coals is creating an oxidative barrier 
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to the coal surface.43 This showed to be the best method of prevention during storage 

having the lowest amount of total loss due to spontaneous combustion. 

Other groups have considered the use of inorganic salts in decreasing spontaneous 

susceptibility. Some salts such as sodium acetate, potassium acetate37 promote the 

oxidation reaction which increases the rate of spontaneous combustion while other salts 

like sodium chloride, calcium chloride17,44 calcium carbonate45, sodium phosphate46, 

sodium sulfite47, and sodium sulfate48 inhibit spontaneous combustion. Theses inhibitors 

improve the thermal stability of coal in three ways: adsorb water from the atmosphere 

which blocks active oxidation sites17,44, promote polymerization and cross-linking 

through ester bond formation45,46,47, or scavenger free radicals forming stable oxygenated 

complexes48. 

Another class of chemicals of interest in preventing spontaneous coal combustion 

are aromatic sulfonate salts. They have been shown as highly effective flame retardants in 

polymers and plastics such as polycarbonate at very low weight loads45. They have been 

shown to slow thermal decomposition forming stable cross-linked solid oxygenate 

complexes. Sulfonates can also react with hydroxyl species to release sulfite in a direct 

substitution reaction49. Sulfites act as radical scavengers reducing the number of free 

radicals in the coal structure, which inhibits further oxidation and decomposition of coal. 

Inorganic phosphate salts are also of interest for their use in preventing spontaneous 

combustion at low weight loading. With the addition of sodium phosphate, the rates of 

oxygen uptake by coal and formation of unstable solid oxygenated complexes slowed46. 

For these reasons, sulfonate salts and phosphate salts are of high interest and have been 

incorporated into this study.  
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For the scope of the project, two non-ionic surfactants, tridecyl alcohol (TDA) 

and ethoxylated tallow amines (TAM), and one anionic surfactant, α-olefin sulfonate 

(AOS) were chosen to study the effects of an oxidative barrier on spontaneous 

combustion. Sodium xylene sulfonate (SXS) was chosen as the aromatic sulfonate salt 

and tetrapotassium pyrophosphate (TKPP) was chosen as the phosphate salt to be used in 

this study. Both are very soluble in water making them easy to use in industrial 

applications with water-based solutions and both promote the formation of stable cross-

linked oxygenated carbon complexes and can scavenge free radicals during coal 

oxidation. 

 

2.6 Thermal Analysis and Microscopy: Methods for Quantifying Spontaneous 

Combustion 

A number of methods have been considered to measure the level of coal 

oxidation. Most approaches use thermal analysis, or the net heat release from the coal bed 

as a result of the dependence on oxygen absorption. Other methods such as microscopy 

can provide insight into the surface characteristics (Figure 4) of the coal matrix that can 

be associated with reactivity of the substrate. The primary techniques used in this study 

measure heat flow and/or thermal decomposition to estimate reactive coal properties. 

Such techniques include thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC).  
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Figure 4. SEM Surface Image of PRB Coal 

 

TGA is a standard technique used to characterize coal samples by the coal 

industry. This method has allowed investigators to measure parameters such as reactivity 

to air using different heating and atmospheric conditions as well as provide insights on a 

coal samples volatile content, mineral content, moisture content, and fixed carbon. There 

are only a few accounts of TGA being used to quantify the propensity of coal to 

spontaneously combust18,46. Most studies to date have looked at low temperature studies 

to measure susceptibility (20 – 100°C) while others have looked at the overall heating 

characteristics of coals. DSC measures the difference in the amount of heat needed to 

raise the temperature of the sample versus the amount of heat needed to raise the 

temperature of a reference sample as a function of temperature. The difference is a 

physical or chemical transformation that is taking place within the sample.  

While prior studies examined variables such as coal rank, temperature of the coal 

deposit, heat evolution of the stockpile, and oxygen concentration on the self-heating of 
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coal, they did not consider parameters such as changes in mass loss, change in petrology 

and chemical composition due to weathering. TGA measures the change in sample mass 

associated with changes in temperature. With this tool, it is possible to measure precise 

values for thermal runaway onset temperatures during the oxidation process, quantify 

absorption and desorption of oxygen, moisture, volatiles, and quantify reactive or 

unreactive components of the coal sample. These methods will serve as insight into the 

heating characteristics of the coal due to specific characteristics such as moisture and 

thermal runaway temperatures, but rates of oxidation are dependent upon a variety of 

contributing factors which have been discussed previously. By altering the heating 

characteristics of coal through mechanisms of inhibition, spontaneous combustion 

susceptibility can be reduced. TGA can be employed to observe changes in the coal’s 

thermal profile as a result of adding chemical inhibitors to the coal bed and measuring 

mass loss over the same temperatures. The derivative of the weight loss can be associated 

with coal reactivity or increases in thermal stability with precise measurements of thermal 

events and reactivity to air. The addition of certain inhibitors can then be quantified to 

determine whether or not the susceptibility of coal to spontaneously combust has 

increased or decreased. 

 

2.7 Thesis Overview 

The work described in this thesis examines two key mechanisms to control 

spontaneous combustion: i) surfactant blends are employed to control low-temperature 

oxidation of coal by creating a physical barrier to the oxidative coal surface slowing the 

heat release rate; and ii) salts are used to increase the onset temperature and push the 
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thermal runaway temperature higher to prevent total loss due to spontaneous combustion. 

Chemical inhibitors chosen for this project include non-ionic and anionic surfactants 

including tridecyl alcohol (TDA), tallow amine ethoxylates (TAM), and α-olefin 

sulfonate (AOS), and two salts, sodium xylene sulfonate (SXS), and tetrapotassium 

pyrophosphate (TKPP). 
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CHAPTER 3. EXPERIMENTAL METHODS 

 

3.1 Research Plan 

Recent investigations into spontaneous coal combustion have made advancements 

in understanding the mechanism of low-temperature coal oxidation. As such, kinetic 

modelling and thermal analysis have shown to be effective techniques in the investigation 

of spontaneous combustion. The main focus of this study is to develop new materials as 

useful inhibitors to this natural phenomenon. Thermal analysis methods were chosen for 

experimental quantification of thermal runaway in coal. These techniques can provide 

insight into moisture content, runaway temperature, and reactivity to oxidation. With the 

application of inhibitors, we can achieve noticeable differences in the thermal 

characteristics of coal and make conclusions as to whether or not spontaneous 

combustion susceptibility has been reduced with the materials chosen. 

 

3.2 Sample Preparation 

Sub-bituminous coal was chosen due to its increased susceptibility to spontaneous 

combustion. In particular, Powder River Basin (PRB) coal was employed in this study 

due the rapid increase in market demand due to low sulfur content. This was compared 

with coal purchased from the National Institute of Standards and Technology, NIST 

1635a. Samples were first ground into a fine powder and passed through a U.S.G.S. Tyler 
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mesh no. 35 sieve (equivalent to a 500 micron sieve mesh) to standardize the particle 

size. The resulting fine coal powders were used in the analysis of untreated and treated 

samples. 

Formulation F101 mimics the potential use in industrial design formulations 

which is why materials were added in the following proportions: 74 % water, 10.5 % 

tetrapotassium pyrophosphate (TKPP), 5.5% tridecyl alcohol (TDA) and ethoxylated 

tallow amine (TAM) blend, 4% α-olefin sulfonate (AOS), 6% sodium xylene sulfonate 

(SXS). The resulting solution, Formulation F101, was applied to the coal with a misting 

sprayer at a 20wt% load. Once F101 was determined that can be used to prevent 

spontaneous combustion, each component of the formulation was investigated to 

determine its role in this process. Samples were treated with various concentrations from 

1% - 40% of non-ionic and anionic surfactants, and phosphate and sulfonate salts which 

were sprayed onto the coal up to 20wt% loadings. These were allowed to air dry for 24 – 

48 hours before thermal analysis using TGA and DSC. 

To prepare for imaging under a scanning electron microscope (SEM), unreacted, 

untreated coal was placed in a vacuum oven for 6 hours at 130˚C. Once removed, the coal 

was cooled to room temperature and an amount equal to 20% by weight of Formulation 

F101 was applied to the coal surface and allowed dry under vacuum conditions at room 

temperature. Once the samples were dried, portions of untreated and treated coal were 

burned for 30 minutes (refer to Section 3.5). Images were analyzed with a Hitachi 

SU8230 low-voltage SEM. 
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3.3 Thermal Analysis Equipment  

Thermogravimetric analysis (TGA) was carried out using a TGA-50 (Shimadzu 

Scientific Instruments), with a gas flow of 40ml min-1 and a sample size of 5 – 15 mg. 

This instrument has one aluminum pan and a furnace which is controlled from a remote 

desktop that is also used to control the heating programs and record the weight of the 

sample as a function of time. A differential scanning calorimeter model DSC-60 

(Shimadzu Scientific Instruments) was also used. The sample size range was 5 – 15 mg, 

and the gas flow was set at 40mL min-1 to have equivalence with the TGA analysis. In 

these instruments, the atmospheres used were nitrogen (N2) and air (21% O2; 79% N2). 

A nitrogen atmosphere is used to study of the heat of volatilization of the sample and an 

air atmosphere is used to measure the heat of O2 absorption. Please see Appendix A for 

Instrument Standard Operating Procedures. 

 

3.4 Proximate Coal Analysis 

PRB coal samples were sent to an outside lab to perform proximate analysis. 

Once proximate analysis was completed, coal from NIST was chosen to best match PRB 

coal resulting in the purchase of lot number 1635a as a control. Both results are listed in 

Table 1 for reference. 
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Table 1. Proximate Analysis – Sub-bituminous coal 

PROXIMATE ANALYSIS PRB NIST 1635a 

% Moisture 30.67 20.54 

% Ash 4.80 6.29 

% Volatile Matter 31.90 44.75 

% Fixed Carbon 33.96 48.56 

Btu/Lb 8,400 11,664 

% Carbon 48.72 68.97 

% Hydrogen 3.34 4.64 

% Nitrogen 0.62 0.95 

% Sulfur 0.32 0.29 

 

3.5 Flammability Temperature Test 

Coal was prepared according to sample preparations in Section 3.2. Two grams of 

untreated coal and two grams of coal treated with the combinatorial blend (F101) were 

placed into 30 cc crucibles over a lit Fisher burner under a vent hood. The samples were 

heated for 30 minutes and reached a minimum temperature of 750°F (400°C). As the coal 

burned, the temperature was monitored using an infrared laser thermometer. Under this 

method, the ignition temperature was determined and flammability of the coal could be 

seen. 

 

 

 

25 
 



3.6 Design Expert 9 (DX9) Experimental Design Analysis 

Developers at Stat Ease, Inc have created modules within Design Expert 9 for 

making improvements to product formulations using statistical analysis and experimental 

design. The software screens vital response factors to locate ideal setting for top 

performance and optimization of product formulations which is advantageous for this 

research. Please refer to Appendix B for information on the DX9 software used in this 

work.  
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CHAPTER 4. RESULTS 

 

4.1 Flammability Tests 

The first step of the project was to determine whether or not coal treated with 

different inhibitors behaved differently than an untreated reference. Using the 

flammability temperature test method (Section 3.5), untreated coal ignited at 278°C 

within 3 minutes of heating. In the same amount of time, coal treated with F101 had not 

ignited even though the temperature of the sample was higher. As the untreated material 

continued to burn, the temperature of the sample continued to rise until a flame was no 

longer visible. The sample had burned within ten minutes after the test began. The coal 

sample treated with F101 did not ignite throughout the duration of the test. The only 

visible effects seen was white smoke coming off the sample which is most likely steam 

and products of incomplete combustion. The samples treated with F101 also had 

noticeably lower temperatures (over 100°C) under the same test conditions. Both 

untreated and treated samples remained over the heat source for 15 minutes. Once the test 

was complete and the samples were cooled, both samples were analyzed for color and 

weight (Figure 5). The untreated sample was a gray ash with residual approximately 10% 

of its original weight. The treated sample appeared unburned but with some char around 

the edge of the crucible. The residual weight was approximately 75% of the initial 

weight. The weight difference was due to moisture evaporation, volatile organic 

27 
 



compounds desorbing from the material and/or incomplete combustion products released 

from the coal. The results of the flammability temperature test provided preliminary 

confirmation of the effectiveness of a blend of salts and surfactants as a flame retardant 

material for coal combustion. Once the first formulation (F101) passed the flammability 

test, the samples were then analyzed under a scanning electron microscope (SEM). 

 

  

Figure 5. Flammability Test of Untreated and Treated Coal 
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Figure 6. PRB SEM Images. A. Unreacted, untreated coal B. Burned, untreated coal 

C. Unreacted coal treated 20wt% with F101 D. Burned, treated coal. 

 

Imaging was performed using a low-voltage Hitachi SU8230 SEM. The surface 

characteristics of unreacted, untreated PRB coal in Figure 6A show the coal is a very 

uneven on the surface. The pockets within the surface features are where oxidation 

occurs. Heat cannot dissipate easily and as a result, the temperature of the coal 

increases.15 Once the untreated PRB coal was burned, the resulting ash was analyzed. The 

coal ash was a fine, flakey powder. The ash had lost many surface characteristics 

compared to those seen in Figure 6A. A drastic difference in the surface characteristics of 

unburned coal treated with F101 can be seen in Figure 6C. The surfactants have created a 

29 
 



smooth, visible film on the coal surface which creates a physical barrier to oxidation of 

the coal. Coal treated with F101 was then burned and analyzed under SEM shown in 

Figure 6D. Notice that the characteristics of the coal are similar to the features seen in 

Figure 6A which was the untreated, unburned coal sample. The visible surface features 

are only charred and most of the coal matrix appears the same as if it was unburned. 

Results from SEM supported the hypothesis that surfactants create a physical barrier to 

oxidation (Figure 6C) and the materials employed provide a retarding effect to coal 

combustion (Figure 6D). 

 

4.2 Thermal Analysis Results: NIST and PRB Coal 

NIST and PRB coals were added to the TGA to determine the reactivity of each 

sample as a function of temperature. As a result of the function of the instrument and the 

reactivity of the coal samples, once thermal runaway of the coal takes place, the 

temperature of the coal rapidly increases. The instrument attempts to correct the 

temperature increase and cools back down to maintain a constant heating ramp rate of 

10°C (Figure 7). Therefore, for the remainder of the TGA analyses, % mass versus time 

will be used (Figure 8 for example). Thus, the derivative plot (dW/dT) gives a clear 

diagnostic variable (the onset temperature for thermal runaway) which can be used for 

analysis. The temperature of particular events of interest, especially thermal runaway 

temperature can be determined with precision.  
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Figure 7. TGA Results of Untreated NIST Coal as a Function of Temperature 

 

Figure 8. TGA Results of Untreated NIST Coal as a Function of Time 

 

 

NIST Untreated 

NIST Untreated Derivative Plot 

NIST Untreated 
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NIST and PRB coal were both treated with a 20wt% load of F101 and compared 

to an untreated coal sample. The thermal runaway temperature of untreated NIST coal 

was recorded at 362.3°C whereas the sample treated with F101 was 419.2°C (Figure 9). 

The thermal runaway temperature of untreated PRB coal was recorded at 364.9°C 

whereas the sample treated with F101 was 462.6°C (Figure 10). The temperature 

difference is significant and might explain why the treated PRB sample did not burn 

during flammability testing. In the untreated PRB sample, approximately 25.0% weight 

was lost initially whereas the treated PRB sample was only 12.9%. This could be 

explained by the surfactants creating an oxidative barrier during low temperature 

oxidation and preventing moisture and high volatile organics from escaping the internal 

coal surface. 

 

Figure 9. TGA: NIST Coal Untreated Versus Treated with 20wt% F101 

NIST Untreated 

NIST Treated with F101 
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Figure 10. TGA: PRB Coal Untreated Versus Treated with 20wt% F101 

 

Samples were also analyzed using DSC. This instrument measures the amount of 

energy required to heat a sample relative to the energy required to heat a reference 

material to the same temperature.  If the recorded value is above 0.00 mW or a positive 

value, the events that are occurring at those temperatures are endothermic in nature. If the 

value is negative or below 0.00 mW, then the events occurring at those temperatures are 

exothermic. Heat of volatilization of an untreated coal sample initially is mostly an 

endothermic process as moisture is being driven out of the sample along with volatile 

organic compound. Once temperatures are high enough, coal combustion begins which is 

an exothermic process. Data supporting this can be seen in Figure 11. Once above 250°C, 

the process is mostly exothermic as combustion products are volatilized. As the 

PRB Untreated 

PRB Treated with F101 
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temperature continues to rise, more heat is being generated by the sample increasing the 

heat flow out of the sample. 

 

Figure 11. DSC: PRB Coal Untreated Versus Treated with 20wt% F101 

 

When samples are treated with F101, the heat flow is endothermic from 20°C–

500°C. As the temperature continues to rise, the heat flow is increasingly endothermic 

which shows the chemistries employed might be valuable in preventing spontaneous 

combustion. As the temperature continues to rise, the added salts and mineral act like a 

heat sink and continue to absorb as much of the energy surrounding the coal sample. It is 

also possible that decomposition of coal, when catalyzed by phosphoric acid formed by 

inorganic phosphate, is highly effective in an endothermic dehydration to yield char 

protecting the coal surface from further oxidation. Similar effects are seen in flame 

PRB Untreated 

PRB Treated with F101  
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retardant phosphorus compounds in cellulose.46 Once it was shown that the formulation 

F101 was effective in increasing thermal runaway temperature and heat flow was mostly 

endothermic, each individual component of the formulation was tested on the coal sample 

to understand the influence of surfactants and salts on the spontaneous combustion of 

coal. 

 

4.3 Thermal Analysis of Active Ingredients 

Figure 12 shows coal was treated with a non-ionic surfactant blend of tridecyl 

alcohol (TDA) and ethoxylated tallow amine (TAM) in increasing weight loads from 

1wt% - 40wt%. When compared to the untreated sample, there was not a significant 

difference in thermal runway temperature, however with increasing weight loadings, the 

mass loss at lower temperatures had also decreased. This means that increasing the 

weight loading of the non-ionic surfactant blend reduces the amount of moisture lost 

from the sample and prevents oxidation of the coal from occurring which supports the 

hypothesis of a surfactant film barrier. 
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Figure 12. TGA: PRB Coal Untreated Versus Treated with Non-ionic  

Surfactant Blend with Increasing wt Loads  

 

In Figure 13, coal was treated with α-olefin sulfonate and similar trends to the 

non-ionic surfactant were observed. As the weight loading of the surfactant was increased 

from 1wt% - 40wt%, the mass loss at lower temperatures decreased. Thus, one 

explanation for this behavior is that the surfactants added to the sample are creating a 

barrier to oxidation. 

 

 

 

Untreated 
Treated with non-ionic surfactant blend 
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Figure 13. TGA: PRB Coal Untreated Versus Treated with AOS with increasing wt loads  

 

Next, coal was treated with increasing amounts of tetrapotassium pyrophosphate 

(TKPP) from 1wt% - 40wt%. Figure 14 shows that weight loadings below 5%, the 

thermal runaway temperature was slightly lowered by 5 °C. Mineral content at this 

weight percent have been shown previously to catalytically enhance the reaction by 

lowering the activation energy.25 Once the weight loading reached 5% or more, TKPP 

can act as an inhibitor to the reaction, acting as a heat sink or at elevated temperatures as 

a radical scavenger. The addition of TKPP also results in a reduction in the percentage of 

mass increase, indicating that the rates of oxygen uptake by coal and formation of 

unstable solid oxygenated complexes are slowed. The addition of inorganic phosphate to 

Untreated 

Treated with α-olefin sulfonate 
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the coal mainly influences the routes for the decomposition of hydroxyl by promoting its 

conversion into phosphate ester linkages.46 The formation of ester bonds not only 

improves the thermal stability of the coal, but also reduces the number of free radicals in 

the coal structure, which allow an inhibition of further oxidation and decomposition of 

coal. With increasing weight loads above 5%, the thermal stability of the coal has 

increased which increases the thermal runaway temperature. At a 20wt% load of TKPP, 

the thermal runaway temperature was determined to be 425.0°C compared to that of 

untreated coal which was 371.9°C. 

 

 

Figure 14. TGA: PRB Coal Untreated Versus Treated with  

TKPP with Increasing wt Loads  

 

Untreated 

Treated with TKPP  
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Figure 15. TGA: PRB Coal Untreated Versus Treated with SXS with Increasing wt Loads  

 

The effects of sodium xylene sulfonate (SXS) are presented in Figure 15. There 

were no significant changes in thermal runaway temperature as the weight loading 

increases from 1wt% - 20wt%. However, SXS can react with hydroxyl species to release 

sulfite in a direct substitution reaction. Sulfites act as radical scavengers reducing the 

number of free radicals in the coal structure, which allow an inhibition of further 

oxidation and decomposition of coal. This could explain why retained mass at lower 

temperatures increases since these inhibitors promote char and cross-linking to reduce the 

number of active site but do not seem to have significant changes in thermal runaway 

temperature. However, Formulation F101 may still benefit from having SXS in the 

blended material. Sodium xylene sulfonate is a wetting agent that can help a formula 

Untreated 

Treated with SXS 
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spread across a surface. It also acts a solubilizer that ensures even distribution of the other 

ingredients throughout the product. 

 
4.4 Combinatorial Optimizations.   

Experimental design software DX9 was used in an attempt to optimize the 

proportion of each material to maximize the synergistic effects of spontaneous 

combustion inhibition in combinatorial blends. Two variables were selected as the 

analytical response to optimize the formulations: onset temperature and foam height. 

Onset temperature is the temperature at which thermal runaway occurs. The goal is to 

maximize the onset temperature of treated coal versus untreated coal to make coal more 

thermally stable. Foam height was used as a measureable value which is comparable to 

ability of the surfactants to spread across the coal surface. For this study, a higher foam 

height is desirable for formulations to have industrial application and relevance.  

The DX9 software designed experiments for a series of 25 formulations with 5 

duplicate tests that were tested to determine responses in onset temperature and foam 

height. The formulations were programmed to have a total maximum concentration 

loading of 25% by weight. Concentrations of each component and results from testing are 

shown in Table 2. 

Once values of onset temperature and foam height were entered into the software, 

some new formulations of interest were proposed and the concentrations of the new 

formulations are shown in Table 3. Formulation F103 was proposed, however, was 

discarded since it was not stable in solution to be a practical application. 
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Table 2. Formulations and Results for Optimization Experiments 
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Table 3. New Optimized Formulations Determined by DX9 software 

 F101 F102 F104 F105 F106 F107 
Raw % weight % weight % weight % weight % weight % weight 

WATER 74.00 40.17 33.60 65.00 30.00 30.00 
TKPP 10.50 16.00 12.10 16.25 15.00 14.00 

TDA/TAM 
blend 5.50 8.60 11.50 6.25 10.00 6.00 

AOS 4.00 15.23 9.50 6.25 20.00 25.00 

SXS 6.00 20.00 33.30 6.25 25.00 25.00 

 

Each new formulation was then applied to coal at 20% weight loadings and tested 

using TGA and compared to untreated coal under air atmosphere. Results of the tests are 

shown in Figure 16. Each new formulation showed promise as each had a positive 

influence on spontaneous combustion inhibition. All showed a decrease in coal oxidation 

at low temperatures and an increase in thermal runaway temperature when compared to 

an untreated reference. 

 

 

42 
 



 

Figure 16. TGA Results of the New Proposed Formulations 

 

Some key features of the results that were of interest include the mass loss at 200°C, 

temperature of surfactant degradation, and thermal runaway temperature. These values 

are summarized in Table 4.  

 

4.5 Reformulation Successes - F104 Results  

Formulation F104 shows the most promise since it had the highest thermal 

runaway temperature and only 6.70% mass loss at low temperatures (below 200°C) 

compared to the other proposed formulations (see Figure 17). Each formulation showed 

benefits of retained mass at low temperatures compared to untreated PRB coal indicating 

success in preventing coal oxidation with the use of surfactants. 

 

Untreated 

Treated with new, proposed  
 formulations 
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Figure 17. Key features: TGA Analysis of PRB Coal Treated with F104 in Air 

 

Table 4. Summary of Results: Improved Formulations 

Samples %mass loss 
@ 200°C 

Thermal 
Degradation: 
Surfactants 

Coal 
Onset/Thermal 
Runaway Temp 

Untreated PRB 24.6 --- 354.8 

F101 13.6 366.2 450.8 

F102 12.0 370.3 452.4 

F104 6.7 373.7 454.8 

F105 12.0 380.8 448.5 

F106 11.0 362.4 419.2 

F107 10.1 373.0 450 
 

44 
 



However, F104 had the most SXS at 33.30%. This increased concentration of SXS 

compared to other formulations has slowed thermal decomposition forming stable cross-

linking solid oxygenated complexes. The additional stable complexes slows down low 

temperature oxidation preventing the regeneration of new active sites. This increases the 

thermal stability which increases the thermal runaway temperature. The additional SXS 

generates excess radical scavenges slowing down coal combustion by reacting with coal, 

oxygen, and hydroxyl radicals. Through combined effects of SXS and TKPP promoting 

similar reactions, the total combined concentration of SXS and TKPP in formulation 

F104 is the greatest which could explain why it shows the lowest retained mass at 200°C 

and highest thermal runaway temperature. The addition of F104 increased the thermal 

runaway temperature of PRB coal 100.0°C from 354.8°C to 454.8°C at a 20wt% load and 

inhibits spontaneous coal combustion. 
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CHAPTER 5. CONCLUSIONS 

 

5.1 Conclusion 

Coal can be classified into four ranks depending the degree of change over time as 

it matures from lignite to anthracite. Coalification has an important bearing on coal's 

physical and chemical properties such as porosity, moisture content, fixed carbon, and 

mineral content. Each of these factors influence the susceptibility of coal to experience a 

spontaneous combustion event. Higher rank coals have been exposed to increased 

pressure and heat resulting in a compact matrix resulting in less available surface area 

and lower moisture content. Low rank coals such as lignite and sub-bituminous coal are 

the most susceptible to spontaneous combustion since the have a higher surface area and 

more porous structure. Low rank coals also absorb/desorb moisture easily increasing heat 

by heat of absorption and increasing available oxidative surface area. 

PRB coal accounts for 46% of the total U.S. coal production due to its high 

demand as a low sulfur coal. Since it is a sub-bituminous type coal, PRB coal is 

susceptible and experiences spontaneous coal combustion. The resulting fire not only 

poses a safety hazard, but also a health hazard if it is not put out quickly. If the fire 

spreads, potentially hundreds to thousands of tons of coal could burn resulting in a 

significant loss and decrease in caloric value. Thus, a method of inhibition is of great 

importance. 
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Chemical additives such as inorganic phosphate and sulfonate salts can be used to 

prevent spontaneous combustion. Each promote cross-linking to form stable carbon 

oxygen complexes which increases thermal stability of coal and increase thermal 

runaway temperature. Both are also able to generate radical scavengers which can slow 

down the oxidative process. Surfactants can also be added creating a physical barrier to 

coal oxidative effectively slowing the heat release rate. Together, mixtures of non-ionic 

and anionic surfactants, and sulfonate and phosphate salts can be used to prevent 

spontaneous coal combustion. 

The results of the flammability test provided preliminary confirmation of the 

feasibility of a blend of salts and surfactants to be used as a flame retardant material for 

coal combustion (Figure 5). Formulation F101 created a physical barrier to coal oxidation 

(Figure 6C) and as a result of the flammability test, showed only a charring characteristic 

leaving the coal surface primarily unburned (Figure 6D). Thermal analysis also supports 

the hypothesis that blends of these compounds reduce coal oxidation at low temperatures, 

promote cross-linking and char formation, and increases thermal runaway temperatures 

near 100°C (Figure 10). 

The design phase of the experiment was used to maximize the effects of adding 

surfactants and phosphate and sulfonate salts to prevent spontaneous coal combustion. As 

a result, new and improved formulations were proposed. Formulation F104 showed to be 

the most promising as it had the highest retained mass at low temperatures and the 

highest thermal runaway temperature compared to untreated PRB coal. Thus, thermal 

analysis can be used to investigate spontaneous coal combustion and determine 

successful methods of inhibition which has been validated in this study. By altering the 
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heating characteristics of coal through the use of chemical additives, spontaneous 

combustion susceptibility can then be quantified to determine whether or not thermal 

stability has increased or decreased. 

 

5.2 Future Research 

The application of inhibitors to reduce spontaneous combustion susceptibility has 

a significant scope for future research. New formulations such as F104 should be tested 

on higher and lower rank coals such as lignite and bituminous coals to determine the 

effects it has on oxidation and thermal runaway temperature. Tests should also focus on 

optimizing percent weight loads on coal for the practical use in industry. The addition of 

these chemicals should have an insignificant effect on the loss of caloric value as coal is 

pulverized creating new available surface area upon utilization. Although laboratory 

testing can provide insight to certain industrial applications, testing on larger coal 

deposits should be considered to determine feasibility and longevity of these additives 

during storage and transport.  
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APPENDIX A 

 

Standard Operating Procedures: Thermogravimetric Analyzer (TGA-50) 

1. Open the gas valve on the N2 or Air (79% N2, 21% O2) tank 
2. Turn the valve on the regulator on (NOTE: Should be at ~35psi) 

a. Boot up the computer.  Turn software on by clicking “TA-60 workstation 
collection monitor” Icon on the desktop 

3. Turn on the TA-60WS box (NOTE: The switch is on the back on the top.) 
4. Turn on the TGA-50 (NOTE: The switch is on the right side of the instrument) 
5. Click on “acquisition” and select “TGA: Channel 1 idle” 
6. Software will automatically recognize the instrument 
7. Remove the fan from below the furnace before dropping down. 
8. Bring down the furnace by pushing the down arrow located on the front of the 

instrument. 
9. Move suspended plate furnace cover to the left to cover the furnace hole.  
10. DO NOT PROCEED UNTIL STEP 9 IS COMPLETE. 
11. VERY carefully with tweezers (tweezers found in a drawer in the TGA/DSC tool 

box in a cabinet next to the computer) place an empty sample pan on the suspended 
balance hanging from the quartz hook on the TGA. (NOTE: Avoid touching pan 
with fingers). 

12. Move the sliding plate back to the right and out of the way. 
13. Close the furnace up by pushing the up arrow located on the front of the instrument. 
14. Once the furnace is closed, allow the balance to reach equilibrium. 
15. Zero balance: 

a. Press “Auto zero” (NOTE: watch level indicator light). Press Enter. 
b. Turn gray knob in either direction until level indicator lights are centered 

on zero. 
c. Repeat a through c until the instrument reads zero. 

16. Once zeroed, follow steps 8-9, remove empty sample pan from balance using 
tweezers and load a coal sample into pan. (Sample size should be in the range of 5-
15 milligrams.) 

17. Return the pan loaded with sample to the suspended balance (follow steps 11-14). 
18. Place black fan, set to control, under furnace so that at the end of the run it will turn 

on automatically and increase the cooling rate. 
19. Set mass limit 

a. Press “Function” button. Use up and down arrows to find “Range.” Press 
Enter. 
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b. There are three mass options: Auto, 20mg, and 200mg.  
c. Select 20mg and press Enter (counter balance is set at 20mg). 

 
20. On software: 

a. Click on “TGA-50 / TA-60 Ch.1/ Idle” in detector window to bring up data 
acquisition screen. 

 

 

 

 

 

 

 

 

 

b. Click on “Measure” in the toolbar. 
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c. From there click on “Measuring Parameters” 
i. Click on “Temperature Program” tab to set temperature ramping 

program. 
a. Row one column one is the rate at which the oven is going 

to heat the sample to the initial temperature. 
b. Row one, column two is the initial temperature. 
c. Row one, column three is the time that the furnace is going 

to hold at the initial temperature. 
d. Row two, column one is the rate at which the oven is going 

to heat the sample to the final temperature 
e. Row two, column two is the final temperature. 
f. Row two, column three is the time that the furnace is going 

to hold at the final temperature once it is reached. 
ii. The temperature program used in this project: 

a. Rate: 10°C/ min 
b. Hold Temp: 500°C 
c. Hold Time: 5 min 

EXAMPLE: 
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d. Click on “File Information” tab. 
i. Enter sample name. 

ii. Input sample weight by selecting “Read Weight” 
iii. Rate Flow has been set at 40mL/min and should be entered “40” 
iv. Enter other relevant information 
v. Click OK. 

 

EXAMPLE: 
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e. Click on “Sampling Parameters” tab to ensure that sampling time is 1.0s. 
Click OK. 
 

EXAMPLE: 

 

f. Click “Measure” in toolbar: 
i. Click “Start.” Confirm sample name and mass are correct. Click 

“Start.” NOTE: The acquisition analysis page background changed 
to a salmon color. The red curve is the Δ Temperature and the black 
curve is the Δ Mass. 

 

21. While cooling, click “TA-60 Analysis” icon on desktop. Load data file. 
a. Click “File”. Click “Open.” 
b. Find filename in Open Dialog Window. NOTE: Date is inserted into 

beginning of filename. 
c. Once file is opened, TGA Analysis can be performed. 

22. Once the TGA has cooled below 40oC, follow steps 8-13 to remove the sample 
from the instrument. 

23. Discard sample pan if you are finished with the experiment. 
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24. Repeat Steps 5 – 23 for the next experiment. If experiments are complete, follow 
steps 25 – 28. 

25. Turn off TGA-50. 
26. Turn off TGA-60 WS box. 
27. Shutdown computer. 
28. Turn off regulator and gas tank. *IMPORTANT* 

 

Standard Operating Procedures: Differential Scanning Calorimeter (DSC-60) 

1. Open the gas valve on the N2 or Air (79% N2, 21% O2) tank 
2. Turn the valve on the regulator on (NOTE: Should be at ~35psi) 

a. Boot up the computer.  Turn software on by clicking “TA-60 workstation 
collection monitor” Icon on the desktop 

3. Turn on the TA-60WS box (NOTE: The switch is on the back on the top.) 
4. Turn on the DSC-60 (NOTE: The switch is on the backside of the instrument) 
5. Click on “acquisition” and select “DSC: Channel 2 idle” 
6. Software will automatically recognize the instrument 
7. Remove outer cover on right hand side of the instrument below DSC-60 label. 

a. Cover should slide off by pulling the cover toward users. 
b. With tweezers, remove inner furnace cover. 
c. Remove flat inner plate cover using tweezers 

8. VERY carefully with tweezers (tweezers found in a drawer in the TGA/DSC tool 
box in a cabinet next to the computer) prepare a new coal sample in sample pan 
noting mass (5-15 milligrams) with an analytical balance. (NOTE: Avoid touching 
pan with fingers). 

a. Using tweezers place pan on an analytical balance and push “0/T” button. 
b. Remove sample pan from balance using tweezers and load sample into pan. 

(Sample size should be in the range of micrograms to milligrams.) 
c. Return pan to analytical balance and record mass. 

9. Remove the sample for the analytical balance and place a lid on the sample pan 
using tweezers. 

10. Crimp sample using crimper. 
a. Place sample pan with lid on center stage of the crimper 
b. Turn the handle on the top of the crimper clockwise to lower the crimper 

press. (Note: Once the handle starts to resist, turn one full rotation further 
to seal the pan) 

c. Turn the handle on the top of the crimper counterclockwise to raise the 
crimper. 

d. Use a small rod to remove pan from crimper by positioning it into the hole 
located on top of the crimper shaft and push down until the sample is 
released. 

e. Check to make sure the pan is sealed correctly. If the pan is NOT sealed, 
repeat steps 8 – 10. If sealed correctly, continue to step 11. 

11. To prepare the reference pan, repeat step 10 with a new, empty sample pan and 
follow crimping procedures. 
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12. VERY carefully with tweezers (tweezers found in a drawer in the TGA/DSC tool 
box in a cabinet next to the computer) place the empty, crimped reference sample 
pan on the LEFT side of the sample holder (NOTE: Avoid touching pan with 
fingers). 

13. VERY carefully with tweezers (tweezers found in a drawer in the TGA/DSC tool 
box in a cabinet next to the computer) place crimped sample pan on the RIGHT 
side of the sample holder (NOTE: Avoid touching pan with fingers). 

14. Once both samples are loaded close the furnace by replacing all of the lids removed 
in step 7 

a. Replace flat inner plate cover using tweezers 
b. With tweezers, replace inner furnace cover. 
c. Slide top cover back on the front of the instrument. 

 
15. On software: 

a. Click on “DSC-60 / TA-60 Ch.2/ Idle” in detector window to bring up data 
acquisition screen. 

b. Click on “Measure” in the toolbar. 
c. From there click on “Measuring Parameters” 

i. Click on “Temperature Program” tab to set temperature ramping 
program. 

a. Row one column one is the rate at which the oven is going 
to heat the sample to the initial temperature. 

b. Row one, column two is the initial temperature. 
c. Row one, column three is the time that the furnace is going 

to hold at the initial temperature. 
d. Row two, column one is the rate at which the oven is going 

to heat the sample to the final temperature 
e. Row two, column two is the final temperature. 
f. Row two, column three is the time that the furnace is going 

to hold at the final temperature once it is reached. 
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i. The temperature program used in this project: 
a. Rate: 10°C/ min 
b. Hold Temp: 500°C 
c. Hold Time: 5 min 

EXAMPLE: 
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b. Click on “File Information” tab. 
i. Enter sample name. 

ii. Input sample weight recorded from the analytical balance. 
iii. Rate Flow has been set at 40mL/min and should be entered “40” 
iv. Enter other relevant information 
v. Click OK. 

 

EXAMPLE: 
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c. Click on “Sampling Parameters” tab to ensure that sampling time is 1.0s. 
Click OK. 
EXAMPLE: 

 

 

d. Click “Measure” in toolbar: 
i. Click “Start.” Confirm sample name and mass are correct. Click 

“Start.” NOTE: The acquisition analysis page background changed 
to a salmon color. The red curve is the Δ Temperature and the black 
curve is the Δ Mass. 

 

17. While cooling, click “TA-60 Analysis” icon on desktop. Load data file. 
a. Click “File”. Click “Open.” 
b. Find filename in Open Dialog Window. NOTE: Date is inserted into 

beginning of filename. 
c. Once file is opened, DSC Analysis can be performed. 

18. Once DSC has cooled below 40oC, follow steps 7, 12-14 to remove the sample from 
the instrument. 

19. Discard sample pan if you are finished with the experiment. 
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20. Repeat Steps 7 - 18 for the next experiment. If experiments are complete, follow 
steps 20 – 23. 

21. Turn off TGA-50. 
22. Turn off TGA-60 WS box. 
23. Shutdown computer. 
24. Turn off regulator and gas tank. *IMPORTANT* 
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APPENDIX B. 

 

DESIGN EXPERT 9 (DX9) SOFTWARE 

1. Open DX9 Software Program. 
2. On the home page, click on “New Design.” 
3. Click on the file folder labeled “Mixture” 
4. Select “Simplex Lattice” Design 
5. Change VARIABLES of the design to read: 

a. Mixture Components: 4 
b. Total: 25 
c. Units: % 
d. Edit name of 4 components to be used in mixture design 

i. TDA/TAM, AOS, SXS, TKPP 
e. Values for low and high for each component are to read 0 and 25 

respectively.  
EXAMPLE: 
 

 
 

6. Click “Continue” at the bottom of the page. 
7. On the next screen, click the drop down menu next to ORDER and select “cubic”. 
8. Make sure the augment design is “checked.” 
9. Leave blocks as “1.” 
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10. Number of run to replicate in this project was “5” which brought the total number 
of runs to equal 30. 

11. Once complete, hit continue to move to the next screen. 
 
EXAMPLE: 

 

12. Change the number of responses from the drop down menu to “2.” 
13. Enter the name of the response factor along with the associated units. 
14. Click “Finish” to move to the next page 

 
EXAMPLE: 
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15. Once the parameters of the experiment are entered into the software, wet 

formulations are batched in the lab using the concentrations listed in this chart: 

 

16. Once solutions are made, coal is treated with each design formulation to determine 

the onset temperature to thermal runaway. 

17. Then data from foam height testing is also added into the design software. 
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18. Once response factor data is entered into the software, analysis of the results and 

formulation optimization can take place. 

19. Results of these analyses are listed in Tables 2 and 3. 
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