
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Fall 12-7-2015

Detection of Lightweight Directory Access
Protocol Query Injection Attacks in Web
Applications
Pranahita Bulusu
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Bulusu, Pranahita, "Detection of Lightweight Directory Access Protocol Query Injection Attacks in Web Applications" (2015). Master
of Science in Computer Science Theses. Paper 1.

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd/1?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Detection of Lightweight Directory Access Protocol Query

Injection Attacks in Web Applications

Master's Thesis

by

Pranahita Bulusu

MSCS Student

Department of Computer Science

Kennesaw State University, USA

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

December 2015

DEDICATION

This thesis is dedicated to my family,

I love you and thank you for always being there for me.

ACKNOWLEDGEMENTS

I would like to thank Dr. Hisham Haddad and Dr. Hossain Shahriar

for their support and encouragement through this entire process.

I am very thankful for this experience.

I would also like to thank my thesis committee members, Dr. Hoganson,

Dr. Xie and Dr. He for their insightful comments and valuable suggestions.

This research paper is made possible through the help and support from

everyone, including my professors, parents, my husband, family and friends.

LIST OF TABLES

Table 1: Mitigation Techniques: Source and Scope of Implementation 28

Table 2: Mapping mitigation techniques to attack type .. 28

Table 3: LDAP vs. SQL query ... 30

Table 4: Comparison of related work ... 36

Table 5: Pre and post-conditions for Self Service Password ... 47

Table 6: Altered pre-conditions for Self Service Password (P1) ... 48

Table 7: Generation of test cases with altered pre and post-conditions for Self Service

Password (P1) .. 49

Table 8: Pre and post-conditions for Login Bypass .. 53

Table 9: Altered pre-conditions and test inputs for Login Bypass (P1) 54

Table 10: Generation of test cases with altered pre and post-conditions for Login Bypass (P1)

 .. 54

Table 11: Pre and post-conditions for Privilege Escalation... 57

Table 12: Altered pre-conditions and test inputs for Privilege Escalation (P1 and P3) 58

Table 13: Generation of test cases with altered pre and post-conditions for Privilege

Escalation (P1 and P3) ... 59

Table 14: Pre and post-conditions for Information Alteration .. 62

Table 15: Altered pre-conditions and test inputs for Information Alteration (P1) 63

Table 16: Generation of test cases with altered pre and post-conditions for Information

Alteration (P1) ... 63

LIST OF FIGURES

Figure 1: Directory tree structure of LDAP server ... 12

Figure 2: A snapshot of a web application interface showing authorized access 14

Figure 3: Resultant page after an authorized login ... 14

Figure 4: A snapshot of unauthorized login ... 15

Figure 5: Resultant page after an unauthorized login ... 15

Figure 6: Code for LDAP search operation .. 16

Figure 7: A snapshot of information disclosure attack .. 17

Figure 8: The resultant page after information disclosure attack... 17

Figure 9: A snapshot of privilege escalation attack .. 17

Figure 10: The resultant page after privilege escalation attack ... 18

Figure 11: Code for information alteration ... 18

Figure 12: A snapshot of information alteration attack ... 19

Figure 13: Resultant changes after information alteration attack .. 20

Figure 14: Elimination of SQL injection attack using 'Decorated Filter' Transformation 25

Figure 15: RCE in phpLDAPadmin v1.2.1.1 (Simplified) .. 27

Figure 16: Code for formation of LDAP query .. 32

Figure 17: Diagrammatic representation of LDAP directory tree structure 33

Figure 18: Example of UML class diagram ... 38

Figure 19: OCL constraints for Class Person ... 38

Figure 20: Generation of pre and post-conditions... 39

Figure 21: Correct technique of changing password in Self Service Password 42

Figure 22: Attacker using '*' wildcard to access the system .. 42

Figure 23: Confirmation email sent to the attacker ... 43

Figure 24: PHP code for vulnerable version of Self Service Password application 44

Figure 25: Class diagram for Self Service Password application .. 44

Figure 26: Flowchart for password change based on reset token sent via email 46

Figure 27: Class diagram for Custom application (Login Bypass) .. 51

Figure 28: Flowchart for login bypass type of LDAP injection attack 52

Figure 29: Class diagram for Custom application (Privilege Escalation) 55

Figure 30: Flowchart for privilege escalation type of LDAP injection attack 56

Figure 31: Class diagram for Custom application (Information Alteration) 60

Figure 32: Flowchart for information alteration type of LDAP injection attack 61

Figure 33: Questions based on Self Service Password application.. 66

Figure 34: Selected options for Self Service Password application (Example 1) 66

Figure 35: Assigned Boolean values based on selection (Example 1) 67

Figure 36: Available OR replacement options.. 67

Figure 37: Selected options for Self Service Password application (Example 2) 70

Figure 38: Assigned Boolean values based on selection (Example 2) 71

Figure 39: Questions based on custom web application for Login Bypass 74

Figure 40: Selected options for Self Service Password application 74

Figure 41: Assigned Boolean values based on selection ... 75

Figure 42: Available OR replacement option ... 75

 ABSTRACT

The Lightweight Directory Access Protocol (LDAP) is a common protocol used in

organizations for Directory Service. LDAP is popular because of its features such as

representation of data objects in hierarchical form, being open source and relying on TCP/IP,

which is necessary for Internet access. However, with LDAP being used in a large number of

web applications, different types of LDAP injection attacks are becoming common. The idea

behind LDAP injection attacks is to take advantage of an application not validating inputs

before being used as part of LDAP queries. An attacker can provide inputs that may result in

alteration of intended LDAP query structure. LDAP injection attacks can lead to various

types of security breaches including (i) Login Bypass, (ii) Information Disclosure, (iii)

Privilege Escalation, and (iv) Information Alteration. Despite many research efforts focused

on traditional SQL Injection attacks, most of the proposed techniques cannot be suitably

applied for mitigating LDAP injection attacks due to syntactic and semantic differences

between LDAP and SQL queries. Many implemented web applications remain vulnerable to

LDAP injection attacks. In particular, there has been little attention for testing web

applications to detect the presence of LDAP query injection attacks.

The aim of this thesis is two folds: First, study various types of LDAP injection attacks and

vulnerabilities reported in the literature. The planned research is to critically examine and

evaluate existing injection mitigation techniques using a set of open source applications

reported to be vulnerable to LDAP query injection attacks. Second, propose an approach to

detect LDAP injection attacks by generating test cases when developing secure web

applications. In particular, the thesis focuses on specifying signatures for detecting LDAP

injection attack types using Object Constraint Language (OCL) and evaluates the proposed

approach using PHP web applications. We also measure the effectiveness of generated test

cases using a metric named Mutation Score.

TABLE OF CONTENTS

Chapter 1: Motivation, Problem Statement and Contribution ... 12

1.1 Background ... 12

1.2 Motivation ... 14

1.3 Problem Statement ... 20

1.4 Research Methodology .. 21

1.5 Contribution .. 21

Chapter 2: Literature Review ... 23

2.1 Overview ... 23

2.2 Mitigation Techniques for LDAP Injection Attacks ... 23

2.3 Comparison of SQL and LDAP Queries... 29

Chapter 3: Technology Overview .. 31

3.1 Overview ... 31

3.2 Technology Overview .. 31

3.3 Formation of LDAP Query .. 32

3.4 Different Nodes in LDAP .. 33

3.5 SQL and LDAP ... 34

Chapter 4: OCL Fault-Injection Based Testing Approach .. 35

4.1 Overview ... 35

4.2 Related Work on Fault-Injection Based Testing ... 35

4.3 Object Constraint Language (OCL) .. 37

4.4 Proposed OCL Fault-Injection Based Testing Approach .. 38

Chapter 5: Case Studies and Evaluation ... 41

5.1 Overview ... 41

5.2 Case Study 1: Self Service Password (Login Bypass, Information Disclosure) 41

5.3 Case study 2: Custom Web Application (Login Bypass) .. 50

5.4 Case study 3: Custom Web Application (Privilege Escalation) 55

5.5 Case study 4: Custom Web Application (Information Alteration) 59

Chapter 6: Tool Implementation .. 65

6.1 Overview ... 65

6.2 Tool implementation for Self Service Password ... 65

6.3 Tool implementation for Custom web application (Login Bypass) 74

Chapter 7: Dissemination of Research Results ... 77

Chapter 8: Conclusions and Future Work .. 80

8.1 Conclusions ... 80

8.2 Future Work .. 81

Appendix A: Source Code ... 82

References ... 86

12

CHAPTER 1

Motivation, Problem Statement and Contribution

1.1 Background

LDAP is a protocol used to access and maintain directory services. LDAP uses a client-server

model for accessing directory information. The data required to form the Directory Information

Tree (DIT) is stored in one or multiple LDAP servers [1]. The data models in directories enabled

with LDAP are represented hierarchically to make the information easily accessible. Along with

the hierarchical representation, LDAP also provides a standardized method of local and remote

data access. Local access standards are provided by Relational Database Management Systems

(RDBMS) systems such as SQL. However, remote access standards are usually proprietary.

LDAP provides a method to move data to multiple locations without affecting any external

access to the data. Such features and usability make LDAP unique and popular for its use in

Directory services [2].

Figure 1: Directory tree structure of LDAP server

13

Figure 1 shows an example of LDAP directory tree structure. The tree is subdivided into

different Organizational Units (ou) along with common names for each of them (cn). For

example, the organizational unit of Human Resources has common name as HR. Different

entries of each organizational unit are given under the common name such as the employees

working in a particular department and any document relevant to the particular department.

The LDAP is used in a large number of web applications, and therefore, different types of

injection attacks are common. The idea behind LDAP injection [3] attack is to take advantage of

an application’s vulnerability of not validating user inputs properly. A vulnerable application

suffering from LDAP injection attacks can be exploited by providing carefully crafted input data

containing parts of the LDAP query. After including the attacker’s inputs, the intended structure

of LDAP query gets altered. When the altered query is executed, many unwanted activities can

take place leading to security breaches (e.g., login bypass). A vulnerable application cannot

differentiate a malicious query generated based on attacker’s supplied inputs and legitimate

query generated based on benign inputs. LDAP injection attacks, such as Login Bypass, can lead

to various types of security breaches.

There are various possibilities of how LDAP injection attacks can be used to exploit a particular

application. LDAP injection attacks allow attackers to disclose potentially sensitive information

and manipulate certain data in the underlying database. As for example, in a popular event

planner application, Events Planner - SmarterMail 7.x (7.2.3925) [4], LDAP injection

vulnerability has been discovered where input type parameters can be provided to alter a

disjunctive (OR) query to conjunctive (AND) query or vice versa. With this type of injection

technique, an attacker can retrieve sensitive information. In many cases, administrators tend to

configure LDAP server insecurely due to lack of knowledge. Thus, a simple injection technique

could access user information or even change the password of the administrator. Many issues

arise after LDAP being enabled because the applications were not tested with LDAP as the

default protocol [5].

Different types of injection attacks such as SQL injections [6], LDAP injections [3] etc. have

been prevalent among web applications over the last decade. In fact, query injection flaws

14

remain as one to the top ranked security vulnerabilities according to Open Web Application

Security Project (OWASP) report [7]. Among several common query injection attacks, much of

the research efforts have been made to detect and prevent SQL injection attacks [8, 9, 10, 11,

12]. In contrast, LDAP injection attacks have not received enough attention.

1.2 Motivation

LDAP injection attacks take place when an application does not validate user inputs properly.

This vulnerability leads to exploitation of an application by providing carefully crafted data

containing parts of the LDAP query. When the altered query is executed, it leads to different

types of security breaches. Depending on the target application implementation, one could try to

achieve any of the following types of attacks, including Login Bypass, Information Disclosure,

Privilege Escalation, and Information Alteration. The attack types discussed in this Section have

been gathered from the literature and technical reports [7, 13, 14, 15].

In this thesis, we have replicated these attacks with a prototype PHP web application employing

backend LDAP server. Details of each of injection type are given below.

Login Bypass

First, we show an authorized access in Figures 2 and 3.

Figure 2: A snapshot of a web application interface showing authorized access

Figure 3: Resultant page after an authorized login

Correct way
of logging

in.

15

Figure 2 shows the login interface for a web application. The Figure shows an authorized access

by providing the username as pbulusu and password as 123456 which leads to the response page

shown in Figure 3. The search filter becomes

searchlogin = "(&(uid="pbulusu")(password="123456"))";

However, as shown in Figures 4 and 5, an attacker can login to the application bypassing the

need of supplying valid username and password. If the provided username and password values

are not validated before applying them to generate a query intended to perform a search

operation, the query gets altered. An attacker commonly applies valid special characters

supported by the LDAP query engine such as &, |, (, and).

Figure 4: A snapshot of unauthorized login

Figure 5: Resultant page after an unauthorized login

Figure 4 shows an attempt of login bypass attack where an attacker provides the following string

to bypass the login page [16]. The search filter becomes:

$searchlogin = "(&(uid=*)(uid=*))(|(uid=*)(password="abcdef"))";

The attacker will

be redirected to this

page though the

correct username

and password is not
entered.

16

When the application runs this query in the backend LDAP server, it returns all available records

leading to the login for the attacker based on the first available username. Figure 5 shows a

snapshot of the resultant page after the injection attack where the attacker gets access to the

application with the same privilege of first username pbulusu. Note that the inputs supplied at the

user interface are not validated by the server side application, hence leading to this security

breach.

In a search query as stated above, if the username and password values are not checked, one

could alter the dynamic query by inserting particular values. Special characters, such as *, &, |,

(, and), could be used to alter the final query’s purpose or intention. Though the correct user

name and password may not be provided for a particular user, one can still get an access to the

user account.

Information Disclosure

An attacker could alter a LDAP query thereby modifying it to another LDAP query with more

information. This could be done depending on the internal LDAP query being used by the

application. Figure 6 shows LDAP search operation code.

1. $conn = ldap_connect("servername");

2. $search_string = $_POST[‘search’];

3. $users = ldap_search ($conn,"uid=$search_string");

Figure 6: Code for LDAP search operation

Line 1 shows a user gets connected to the LDAP server. Line 2 shows the search string

($search_string) that the user has entered in a form ($_POST[‘search’]). Line 3 shows the

search function, ldap_search, used to search for the provided input. An attacker enters * as the

input. Therefore, line 3 becomes $users = ldap_search($conn,"uid=*");

Figure 7 shows the attacker uses only the * symbol instead of a valid user name, and gets access

to the information of all employees in the system (Figure 8).

17

Figure 7: A snapshot of information disclosure attack

Figure 8: The resultant page after information disclosure attack

Privilege Escalation

An attacker could alter a LDAP query modifying it to another query with the intention of gaining

more privilege defined by the security level of the objects. This could be done depending on the

internal LDAP query being used by the application. Figures 9 and 10 illustrate privilege

escalation attack.

Figure 9: A snapshot of privilege escalation attack

Only the "*"

symbol is being

used instead of a

valid user name

in this case.

The attacker can

get access to the

entire Directory

since the code is

vulnerable.

18

Figure 10: The resultant page after privilege escalation attack

In Figure 1, user klegg and mlevy are listed under ou - HumanResources. Each of them has

different access privileges to various resources. In Figure 9, the user mlevy (attacker) is

providing the user name as klegg(ou=* and the password as *. As a result, user mlevy will be

able to gain access privileges of user klegg (victim). Now, mlevy has access to klegg’s resources

shown in Figure 10.

Information Alteration

LDAP can be used for adding, modifying and deleting information along with search operations.

Different applications that manage directory data in organizations are not necessarily connected

to the directory server. Instead, Application Programming Interfaces (APIs) are used to interact

via LDAP with the information stored in the directory. If the user provides inputs to an

application through a form, an attacker may modify this information to generate an unexpected

result such as modification or deletion of information [14]. Figure 11 shows code for information

alteration.

1. $attr[“cn”] = “klegg”;

2. $dn = “uid=klegg,ou=*”;

3. $result = ldap_modify($ldapconn,$dn, $attr);

Figure 11: Code for information alteration

19

In Figure 1, klegg belongs under organizational unit (ou) HumanResources. However, at Line 2,

and distinguished name ($dn) is formed having ou=*. The alteration of ou is invoked by the

method ldap_modify() at Line 3. As a result, klegg now belongs to the other ou (Sales).

Figures 12 and 13 illustrate an example of information alteration type of LDAP injection attack.

In Figure 12, the user sprice of ou Sales Representative who has security level as 'low' accesses

and replaces the Contract Document #2 which belongs to ou Senior Management with the

security level 'high'. In applications which are vulnerable to LDAP injection attacks, an attacker

can replace information successfully as shown in Figure 13.

Figure 12: A snapshot of information alteration attack

20

Figure 13: Resultant changes after information alteration attack

1.3 Problem Statement

Protection of LDAP-enabled web applications involves significant effort for the administrators

and developers. Though prevention approaches of LDAP injection attacks are available (e.g.,

administrator and developer techniques), they cannot eliminate LDAP injection attacks

completely. This work is an effort to research and propose a new approach to address LDAP

injection attack types.

During our literature search, we identified a list of common limitations among past research

efforts. These limitations are summarized as follows:

 Lack of exhaustive LDAP injection attack type detection coverage. In particular, most

efforts are effective to detect only login bypass attacks. However, they are not suitable for

mitigating privilege escalation attacks that may occur through legitimate login of a user in

vulnerable applications.

 Little support to enable developers to securely implement web applications resistant to

LDAP injection attacks. In particular, there is no effort of formally specifying attack

21

signatures which should be tested with suitable test inputs for the presence of LDAP

injection vulnerabilities.

Given the obtained literature search results, we define the problem statement for this thesis as

follows:

This research work addresses common limitations found in past research efforts by performing

an in-depth study of LDAP injection attack types, provides an approach to detect the different

types of LDAP injection attacks, and evaluates the proposed approach using PHP web

applications known to be vulnerable to LDAP injection attacks.

1.4 Research Methodology

The research methodology comprised of an intensive literature review of over 40 articles

consisting of information on LDAP injection attacks and mitigation techniques. The research

methodology involves the following activities:

1) Conduct literature search on existing LDAP injection attack types and their prevention

techniques.

2) Study and analyze collected information to understand how LDAP injection attacks are

performed by the attackers and how they are executed at the server side.

3) Develop a prototype web application to replicate selected LDAP injection attacks to

specify the signatures of LDAP injection attacks.

4) Develop a technique to detect LDAP injection attacks based on the identified attack

signatures.

5) Evaluate the proposed detection technique against PHP web applications.

1.5 Contribution

The objectives of this thesis are to conduct an in-depth survey of various types of LDAP

injection attacks; study LDAP injection attacks for various scenarios and understand their

impact; develop a taxonomy of LDAP code injection attacks; select a set of tools to be studied to

compare the suitability of LDAP injection detection; and develop a new technique to overcome

existing limitations and detect LDAP injection attacks.

22

The work addresses the stated problem statement by performing the following tasks:

1) Conduct Literature Search and Develop Web Application

i. Conduct literature survey on existing techniques and methodologies used to prevent

LDAP injection attacks and critically examine the code of existing injection mitigation

techniques.

ii. Compile the literature research results and document the findings for conference

submission.

iii. Develop a web application to replicate selected LDAP injection attacks and to check the

effect it has on the application.

2) Develop Detection Technique

i. Apply Object Constraint Language-based (OCL) to specify signatures for LDAP

injection attack types. With OCL, we capture the needed pre-conditions, post-conditions,

and invariants that might get affected due to LDAP query injection attacks.

ii. Develop an algorithm to perform fault-injection on OCL constraints (pre-conditions and

post-conditions).

3) Perform Evaluation and Dissemination

i. Apply and evaluate the proposed technique with a developed PHP web application and

one open source PHP web application reported to have LDAP injection vulnerability.

ii. Disseminate the work results through conference publications.

In the next Chapter, we discuss the literature search findings about the various mitigation

techniques for LDAP injection attacks.

23

CHAPTER 2

Literature Review

2.1 Overview

Many research works have been done in the past to prevent LDAP injection attacks [17, 18, 19,

20, 21]. This Chapter presents a literature review of related work on LDAP injection attacks and

highlights common Mitigation Techniques (MTs). This chapter also contrasts SQL Injection and

LDAP Query Injection attacks.

2.2 Mitigation Techniques for LDAP Injection Attacks

Upon literature review of existing mitigation techniques for LDAP query injection attacks, we

classify these techniques into six categories (MT1-MT6) described below.

MT1: Administrator techniques

Password Policy Schema – LDAP has an overlay called Password Policy (ppolicy) to prevent

LDAP injection attacks. The default policy of ppolicy is that the user account gets locked for 24

hours after 10 failed access attempts so as to prevent unauthorized access [13].

LDAP Configuration – This is another approach in which access control is implemented on the

data in the LDAP directory, especially during configuration of permissions on user objects, and

also when the directory is used for single sign-on solution. The access level permitted to the

users can be limited wherein they are not allowed to make any modifications thereby preventing

LDAP injection attacks [13 and 15].

IP Firewall – Access can be restricted by using the IP firewall capability of the server system.

This is either based on the clients' IP address and network interface, or only the network interface

used to communicate with the client. The configuration of IP firewall are dependent on the type

of IP firewall used [22].

24

MT2: Developer techniques

Incoming data Validation and Dynamic checks – This is another technique of prevention. All

client supplied data should be thoroughly checked for any kind of malicious input. The best way

of achieving this is to default-deny everything else other than letters and numbers. However, if

symbols need to be used, they should be converted to HTML substitutes before usage [13].

Another prevention technique is to escape special characters. Most of the LDAP injection attacks

are performed using special characters either in the 'Distinguished Name' field or in the 'Search'

filter. Escaping these characters help prevent LDAP injection attacks.

Characters such as &,!,|,=,<,>,,,+,-,",', and ;, should be escaped using \ before being used

in a query; while characters such as (,),\,*,/ and Null used in the Search filter can be escaped

using {\ASCII}, which are given as {\28},{\29},{\5c},{\2a},{\2f} and {\0} respectively. It is a

good practice to include '\\' at the beginning of escaped character listings to prevent recursive

replacements [23].

MT3: Program Transformation technique

The security of a system perimeter can be improved by using security oriented program

transformations by introducing the components of authentication, authorization and input

validation. These three components play a critical role in the security of any system as they form

the basis for prevention of exploitation when applied effectively. When the code is developed for

a particular system, the general approach is to design security from the base level and fix new

vulnerabilities when a security threat is faced. Since it is not feasible to redesign the entire

software whenever a security threat emerges, the vulnerability is fixed only at a certain set of

points. In either way, the vulnerability is not fixed globally. Though the approach of security-

oriented program transformations is compared to 'refactoring', it does not preserve the original

behavior of the system; instead, it preserves the expected behavior and responds in accordance

with the attacks.

25

The developer plays a key role in specifying the input validation policies as well as parameters

for the program transformation mechanism. Once the input validation policy and the parameters

are known, the implementation of program transformations becomes faster and more reliable.

The input validation task can either be achieved by adding a centralized perimeter filter thereby

eliminating duplication of code or multiple validation policies can be applied to the input

variable by using 'Decorated Filter'. Figure 14 shows how a SQL injection attack could be

eliminated by using 'Decorated Filter'. However, the policies to be applied for the input

validation of SQL and LDAP injection are different; hence the developer can either use a library

of filters or customize it by using parameters.

Figure 14: Elimination of SQL injection attack using 'Decorated Filter' Transformation

In this technique of adding security on demand, when an unsafe input occurs, it is transformed to

a safe input thereby preventing the attack. By using automated tools in this type of rectification

policy, programmers can focus on policies instead of writing and implementing checks, which is

a time consuming task. Program transformations are currently used to eliminate SQL injection

attacks, Log injection attacks, XSS injection attacks, and Direct Static Code injection attacks by

26

implementing policies and removing AND and OR statements. However, they can be similarly

implemented to avoid LDAP injection attacks as well [17 and 18].

MT4: Application Security IDE technique

 Application Security IDE (Integrated Development Environment) is an approach that works

similar to spelling and grammar checks in word processor, indicating potential errors while

developing a program thereby allowing developers to fix it and reducing the chances for a

possible future security threat. Moreover, these warnings can also be used at a later stage to

reduce time in software security audits. This particular approach has not been implemented to

prevent LDAP injection attacks primarily. However, the mechanism of 'Interactive Code

Refactoring' is used for 'Input Validation', which is one of the key factors in preventing LDAP

injection attacks [19].

MT5: Remote Code Execution detection technique

Remote Code Execution (RCE) attacks are considered as one of the most prominent security

threats for web applications in the recent times. The attacks caused with the help of RCE are to

such an extent that it is the most widespread PHP Security issue since the mid of 2004 (Open

Web Application Security Project - OWASP). These kind of attacks are similar to Cross Site

Scripting but in a more sophisticated way as they require multiple rounds of communication

between client and server. This approach has been applied to phpMyAdmin and phpLDAPadmin

applications.

Figure 15 shows that a particular type of RCE vulnerability exists in phpLDAPadmin because

malicious code can be provided and executed. The malicious code executes for access control

and allows the attacker to perform privilege escalation. Using RCE detection prevents privilege

escalation injection attacks [21].

27

Figure 15: RCE in phpLDAPadmin v1.2.1.1 (Simplified)

MT6: Static Analysis technique

In this approach, a formal vulnerability signature can be used to detect a possible vulnerability.

Object Constraint Language (OCL) is used to capture vulnerability signatures. Depending on

whether the source of the vulnerability is related to input validation, output validation,

processing or hosting, they are categorized so as to perform static/dynamic analysis. Using a

formal vulnerability analysis definition can be beneficial to perform 'threat analysis' and

'vulnerability analysis' during the development stage as well as 'attack analysis' after deployment

of the project. This can help find possible vulnerabilities and appropriate action can be taken.

OCL based vulnerability signatures can be applied for prevention of SQLI, XSS, Improper

Authentication, and Improper Authorization. Though this approach has not been directly used for

prevention of LDAP injection attacks, it can be modified accordingly [20].

Table 1 shows the source and scope of implementation for each mitigation technique discussed

above. Other types of mitigation techniques include those used to prevent SQL injection attacks.

Among several common types of query injection attacks, much of the research efforts have

focused on preventing SQL injection attacks [22, 24, 10, 11, 12]. In contrast, LDAP injection

attacks have not received enough attention.

28

Table 1: Mitigation Techniques: Source and Scope of Implementation

 Source Mitigation Technique Scope of Implementation

MT1
Administrator techniques

[15,22,25]

Password Policy Schema; Frequent

changing of Password; LDAP
Configuration; IP Firewall

LDAP injection

MT2
Developer techniques

[13,14]

Data validation and dynamic

checks; Outgoing data validation
LDAP injection

MT3

Prevention of Injection

Attacks by Rectification

policies [17] Program Transformations

SQL injection; LDAP
injection; Log injection; XSS

injection; Direct Static Code

injection Program transformation

techniques [18]

MT4
Application Security IDE

technique [19]

Interactive Code Refactoring;

Interactive Code Annotation; (still

in implementation stage)

Input validation; Broken

Access control; Cross-site

Request Forgery

MT5
Remote Code Execution

detection technique [20]
Static Analysis Static Analysis

MT6
Static Analysis based

technique [21]

OCL-based vulnerability signature

approach

SQL injection; XSS injection;

Improper Authorization;

Improper Authentication

Table 2 provides a mapping of mitigation techniques to attack types. The symbols and

indicate whether a mitigation technique is applicable or not to prevent the corresponding attack

types. The symbol indicates that a mitigation technique has been applied to prevent other types

of attacks (SQL injection), but not LDAP Injection.

Table 2: Mapping mitigation techniques to attack type

Login

Bypass

Information

Disclosure

Privilege

Escalation

Information

Alteration

MT1

MT2

MT3

MT4

MT5

MT6

29

As shown in Table 2, various mitigation techniques that have been developed and implemented

focusing on injection attacks in general but not particularly on LDAP injection attacks types.

Moreover, these techniques do not necessarily provide a complete solution to such injection

attacks. They are implemented to focus on a particular scenario, or provide a solution with prior

restrictions.

2.3 Comparison of SQL and LDAP Queries

Our work is motivated by the syntactical differences and usage between SQL and LDAP queries.

Techniques such as proxy-based approach of preventing SQL injection attacks [9], static analysis

[12], library class PreparedStatements in Java [26] can be used to prevent SQL query injection

attacks but cannot be directly applied to prevent LDAP query injection attacks.

Given the syntactic differences between SQL and LDAP, further discussed in Chapter 3 (Section

3.5), the injection attack inputs and the subsequent consequences are also different. For example,

a traditional tautology SQL injection attack may lead to deleting an entire table; whereas a

tautology LDAP injection attack may lead to leaking privileged information from a node at a

specific level in the directory tree [27, 28].

Table 3 illustrates the difference between LDAP and SQL query. A benign input is given in rows

1 and 2 and rows 3 and 4 consist of an attack input (username and password). The second and

third column shows the search query for LDAP (ldapQuery) and SQL (sqlQuery),

respectively. The second row shows the LDAP and SQL queries for the supplied benign input

(username and password). In particular, the LDAP query has two expressions

(uid="pbulusu", password="123456"), the results of these expressions are combined

logically with AND (&). The SQL query result is affected by the WHERE condition, where all

columns from table users for the rows having username and password columns as pbulusu and

123456, respectively, are returned.

30

Table 3: LDAP vs. SQL query

 LDAP Search Query SQL Search Query

Benign

Input

Username: pbulusu

Password: 123456

Username: pbulusu

Password: 123456

Query with

benign input

ldapQuery="(&(uid="pbulusu")(

password="123456"))";

sqlQuery = 'SELECT * FROM users

WHERE username="pbulusu" AND

password= "123456"';

Attack input
Username: *)(uid=*))(|(uid=*

Password: ""

Username: ""

Password: "" OR ("1"="1)

Query with

attack input

ldapQuery="(&(uid=*)(uid=*))(

|(uid=*)(userPassword=""))";

sqlQuery = 'SELECT * FROM users

WHERE username="" AND

password="" OR ("1"="1")';

The third and fourth rows of Table 3 show attack inputs and corresponding queries for LDAP

and SQL, respectively. An attacker performs an LDAP query injection attack by providing the

username as '*)(uid=*))(|(uid=*' and the password as blank. The resultant LDAP query

becomes ldapQuery="(&(uid=*)(uid=*))(|(uid=*)(userPassword=))", which would

return all user IDs from the directory tree. In contrast, an attacker performs a SQL query

injection attack by providing the username as "" and the password as "" OR ("1"="1). The

resultant SQL query becomes sqlQuery = 'SELECT * FROM users WHERE username="" AND

password="" OR ("1"="1")'. The WHERE condition will be evaluated as true, which would

return all selected rows from table users. Hence, an attacker can gain unauthorized access.

Different types of injection attacks such as SQL injections [6] and LDAP injections [3] have

been prevalent among web applications over the last decade. In fact, query injection flaws

remain as one of the top ranked web security vulnerabilities according to Open Web Application

Security Project (OWASP) report [7].

In the next Chapter, we present technology overview and discuss some more details of LDAP.

31

CHAPTER 3

Technology Overview

3.1 Overview

This Chapter presents a technology overview of the LDAP protocol. Some more details of LDAP

such as formation of LDAP query, different nodes in LDAP such as Common Name (cn),

Distinguished Name (dn) etc. are introduced in this Chapter. It also includes an introduction to

SQL and the basic differences between LDAP and SQL.

3.2 Technology Overview

The Lightweight Directory Access Protocol (LDAP) is a commonly used protocol in

organizations for accessing information from directories. LDAP was developed by The Internet

Engineering Task Force (IETF) in order to find a simpler version of the existing Directory

Access Protocol X.500. The term 'Lightweight' in LDAP comes from the fact that there is a

reduction in the number of protocol overheads in comparison with the X.500 [2]. LDAP gains its

popularity because of features such as representation of data objects in hierarchical form, being

open source and relying on TCP/IP, which is necessary for Internet access. LDAP uses the

TCP/IP for its transport and network layers instead of Open Systems Interconnection

(OSI Model) stack which was used in the X.500. Some duplicate functions from X.500 standard

were eliminated in LDAP. It is significantly simpler and can be customized according to the

needs of a particular organization [29].

LDAP is particularly used for 'Write-once-Read-many' kind of applications. Thus, LDAP is

suitable for maintaining the contact information of all the employees in any organization which

would remain the same for a large period of time. However, LDAP is not suitable for

applications that require frequent content update such as online transaction processing and e-

commerce. LDAP is highly suitable when the data being stored requires features such as cross-

platform availability of data, access to data from a large number of computers or applications,

few changes of data, and storage of data in a single record [30].

32

3.3 Formation of LDAP Query

The formation of an LDAP query consists of defining the LDAP Server details, connecting to the

LDAP server and binding to the LDAP server. Depending on the final requirement, the query

will consist of several operations such as search, update and delete. Figure 16 shows example

code that uses PHP to connect and bind to the LDAP server.

// configuration

1. $ldapserver = '192.168.1.124'; -- LDAP Server

2. $ldaptree = "dc=ubuntuldap2"; -- Defining DC (Domain Component)

// connection to ldap server

3. $ldapconn = ldap_connect($ldapserver) or die("Could not connect to LDAP

server.");

4. ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);

// verifying connection to ldap server

5. if($ldapconn){

// binding to ldap server

6. $ldapbind = ldap_bind($ldapconn, "cn=admin,".$ldaptree, "admin") or die

("Please enter valid login credentials!");

// verify binding

7. if ($ldapbind) {

8. Perform multiple tasks here...(Such as Search/Update/Delete)

11. }

12.}

Figure 16: Code for formation of LDAP query

In Figure 16, line 1 defines the IP address of the LDAP server. The LDAP tree with base domain

component (dc=ubuntuldap2) is defined in line 2. Line 3 establishes a connection to the LDAP

server through ldap_connect(…) method call. If the connection is unsuccessful, the script throws

an error stating 'Could not connect to LDAP server'. Line 4 sets the protocol version.

33

Once the LDAP connection is verified in line 5, the next step is to bind to the LDAP server as

shown in line 6. Once the LDAP Binding is verified in line 7, the user can perform multiple tasks

based on the requirement.

3.4 Different Nodes in LDAP

Common nodes in an LDAP directory are defined as o (organization), dc (domain component),

ou (organizational unit), dn (distinguished name) and cn (common name) according to the X.500

Directory specification.

Data in LDAP is represented in a hierarchical tree structure called Data Information Tree (DIT).

The tree structure of LDAP directory is similar to the top-down representation of UNIX file

directories or Domain Name Server (DNS) trees. The top level in the LDAP tree structure is

referred to as the base dn and breaks down into individual objects, each of which is called an

entry. A simple representation of DIT is shown in Figure 17.

Figure 17: Diagrammatic representation of LDAP directory tree structure

Figure 17 shows the directory structure for a small company. The top-level node

in TinyCompany has an Organization (O) attribute. TinyCompany comprises of the Engineering,

Accounting, and Marketing departments which are represented with Organizational Unit (OU)

34

entry (e.g., OU=Engineering). Accounting OU has two organizational units which are Accounts

Payable and Accounts Receivable. For example, the common name (CN) Kathy Lee is under the

OUs Accounts Payable and Accounting. It can thus be seen that, an entry can be composed of

one or more OUs. The Marketing OU has one printer resource (CN=Printer3) [31].

3.5 SQL and LDAP

SQL is a database query language whereas LDAP is a protocol used for accessing directory

service. There are significant differences between SQL and LDAP. First, LDAP is a protocol for

accessing directory data over the network, where directory information is faster and easier to

read. However, update and delete operations are expensive. On the other hand, SQL is a query

language that supports transactional operations on relational databases requiring frequent read,

write, update, and delete operations.

The data representation and organization between LDAP and SQL also remain largely dissimilar.

For example, LDAP stores directory data in a tree structure having a set of nodes and edges;

whereas SQL stores data in tables of a relational database. The LDAP tree may reside among

multiple machines in a network, whereas traditional SQL database stores tabular data in one

local machine.

At the syntax level, though there are some similarities between SQL and LDAP (e.g., =, >, <).

Operation wise, both support insertion, deletion, and viewing of data. However, there are

dissimilarities in syntax. For example, SQL “AND” means the logical AND operation, whereas

LDAP represents it as “&”. Further, SQL supports a rich set of aggregate (e.g., count, sum) and

join (e.g., inner join, outer join) operations for multiple queries. In contrast, LDAP has no such

support.

In the next Chapter, we introduce fault-injection based testing, some related work on fault-

injection based testing, and our proposed approach.

35

CHAPTER 4

OCL Fault-Injection Based Testing Approach

4.1 Overview

This Chapter introduces the approach fault-injection based testing and covers some relevant

work on fault-injection based testing in Section 4.2. Next, we introduce Object Constraint

Language (OCL) and our proposed approach of OCL fault-injection based testing in Sections 4.3

and 4.4, respectively.

4.2 Related Work on Fault-Injection Based Testing

Fault-based testing technique is intended to generate or assess test cases by anticipating errors in

a system under test and deliberately inject faults in the system. This approach can demonstrate

only the presence of specific faults (injected), but not the absence of faults during testing. The

approach can identify effective test cases that can reveal specific faults we injected in the system

[32].

Some relevant works on fault-injection based testing [33-38] are shown in Table 4. These works

use this technique to test robustness of web application security scanner [33], effectiveness of

intrusion detection systems intended to detect network protocol level attacks [34], robustness of

router protocol implementation to tolerate malformed protocol data units against failure or

crashes [35], effectiveness of input validation routines in web applications implemented in PHP

[36], capability of handling malformed input PDF files by Java applications [37], robustness of

embedded applications against skipping login mechanism bypassing [38], utility applications

written in C/C++ [39], and evaluation of performance and security of web services [40].

36

Table 4: Comparison of related work

Tool / Work

(Test Level)

Vulnerability

covered

Source of test

cases
Test case generation method

Target

applications

Fonseca et al.

[33]
SQLI and XSS N/A N/A Web scanners

Vigna et al.

[34]

Buffer Overflow

(BOF), Format

String Bug (FSB)

Attack

templates

Inject fault in application and network

layer

Intrusion detection

systems

Tal et al. [35] BOF
Protocol

syntax
Inject faults

Network router

algorithm

implementation

(daemons)

Kiezun et al.

[36]
SQLI and XSS Source code

Solve path constraints in applications and

replace non malicious test cases with

attack test case

Web applications

in PHP

Ghosh et al.

[37]

Testing of

program crash,
abnormal

behavior through

exceptions such as

DocumentExcepti

on, IOException

etc.

Java byte code

Instrumenting class file using BCEL tool,

tester needs to select a program line to

replace with injected faulty line of code at

Java opcode level

Java, tested on PDF

generator

application written

in Java

Fouque et al.

[38]

Bypassing

password

checking through

buffer overflow
exploit

N/A

Faults injected at the assembly code level

by changing the return address of a

function conducting access control check,

with the next instruction as skipping
access control

Applications

running on

embedded

hardware, used for

access control
application such as

password checking

Voas [39] Buffer overflow Source code

Replacing, adding or deleting source code,

replacing implemented function call with

perturbed function call intended to lead

fault by altering parameter or return values

Utility applications

such as FTP server

(wu-ftpd)

Oliveira et

al.[40]

Assess

performance

anomaly of web

service

frameworks

Web service

Performance of web services stacks are

evaluated using a benchmark called

WSTest with different SOAP object sizes

and security of web services is evaluated

using security testing tool called

WSFAggressor

Web Service

frameworks

Salas et al.

[41]
SQLI

Incomplete or
under-

specified

model

Obtain constraints from design
documents, express constraints in Object

Constraint Language (OCL), finally

solving it with a constraint solver

Web applications

design

Grela et al.

[42]

Anomaly of

Business

Processes

Fault-injection

in BPEL

processes

Software Fault Injector for BPEL

processes (SFIBP)

Business Process

Execution

Language (BPEL)

processes

Aichernig et

al.[32]
N/A

Model-based

specifications
Mutation of OCL specifications

Triangle type

determination

program

Our approach LDAP Injection
Source code

and OCL

Derive pre-conditions and post-conditions

from flow graph, and mutate pre-

conditions and post-conditions

Web applications

37

A few approaches rely on application design level information to generate test cases. Salas et al.

[41] generate OCL constraints from UML class diagrams and solve them to generate test cases;

while Grela et al. [42] propose fault-injection in business processes expressed in Business

Process Execution Language.

Our work is closely related to the test case generation method presented by Aichernig et al. [32].

In their work, the authors have presented a method of test case generation for pre-condition and

post-condition specifications. They have generated Object Constraint Language (OCL)

specifications for a triangle type determination program, whereas we have generated OCL

specifications for PHP web applications relevant to LDAP query injection attacks. Our approach

also consists of generating control flow charts to identify needed pre and post-conditions.

In contrast to earlier work, our proposed technique obtains control flow from source code,

derives expected constraints and then applies faults in pre-conditions or post-conditions to

generate test cases to reveal LDAP injection vulnerabilities. We express pre-conditions and post-

conditions using OCL notation.

4.3 Object Constraint Language (OCL)

OCL is a language that complements Unified Modeling Language (UML) notations. OCL is used

to describe and enhance rules that are applicable to UML. Detailed aspects of a system design

can be precisely described using OCL which is not possible with UML alone. Thus, OCL is

widely used in model-driven engineering (MDE) techniques as a default language to express

model transformations, rules or code-generation templates. Use of OCL makes UML class

diagrams more precise as OCL is used to specify invariants of class attributes and pre-conditions

and post-conditions of class methods [43].

OCL helps in achieving automation of software development in UML. A combination of UML

and OCL helps developers generating effective and coherent models. OCL plays a key role in

Model Driven Architecture by enabling platform-specific models to communicate with platform-

independent models [44].

38

A UML class diagram 'Person' and its respective attributes 'name', 'address' and 'birthdate' is

shown in Figure 18. The generated OCL constraints are shown in Figure 19 [45].

Figure 18: Example of UML class diagram

1. context Person
2. inv fields_nonnull: self.birthdate -> notEmpty() and

self.name -> notEmpty()and self.address -> notEmpty()

3. context Person :: getAge():int
4. post positive_age : result >= 0

5. context Person :: setName(name:String): void
6. pre name_given: name -> notEmpty()
7. post name_set: self.name = name

Figure 19: OCL constraints for Class Person

Figure 19, line 2 defines an invariant for class 'Person' which indicate all three attributes to be

'non-empty'. Next, getAge() method (line 3) needs to satisfy the post-condition that age must be

a positive integer number (line 4). The method setName (line 5) has a pre-condition in line 6

which checks if the name attribute is not empty. In line 7, once the pre-condition is satisfied, the

given name is set to the name of the particular user.

4.4 Proposed OCL Fault-Injection Based Testing Approach

Ideally, we like to have a set of pre-conditions and post-conditions (expressed in OCL) to apply

fault injection on these conditions as part of the test case generation process. However, we rarely

have the design level information for a given implementation (e.g., class diagrams and

dependency). Given that, we follow a process (Figure 20) to capture set of conditions from

program source code.

39

Figure 20: Generation of pre and post-conditions

Process for Generation of pre and post-conditions

Step 1. Examine the source code, identify functionalities of applications related to LDAP query

generation and invocation, and obtain class diagrams capturing the key class attributes that

may contribute to be part of pre and post-conditions.

Step 2. Develop a flow chart for application functionality.

Step 3. Record needed pre and post-conditions required for successful completion of functionalities.

The conditions are expressed in terms of class attributes captured in step 1.

Step 4. For each path in the flow chart, combine all pre and post-conditions by removing duplicate pre-

conditions.

Once the list of pre and post-conditions is identified, we apply the fault adequate test case

generation algorithm discussed next.

40

Algorithm: Fault adequate test case generator

Let the input and output for the fault adequate test case generator be given as follows:

Input: D ∈ {pre-conditions, post-conditions}

The intended design D is composed of valid pre-conditions and post-conditions, which when satisfied

will prevent the occurrence of LDAP injection attacks.

Output: T = {test cases revealing LDAP injection attack types}

Here, T = {t1, t2,} where tk = <ik, ok>; and ik is the k
th
 input and ok is the k

th
output

Step 1: Given that the intended design is D, generate D' from D

 where D' is the faulty design and

 D' ∈ {pre', post'},

 where pre' and post' define faulty pre-conditions and post-conditions respectively.

 pre' is generated by randomly replacing one of the logical operator and relational operator

with other from the sets {OR, AND, NOT} and {≤, ≥}

Step 2: Define an input i such that i satisfies pre ∨ pre'.

 (∨ indicates logical OR)

Step 3: Apply input i to D and D'.

 Observe outputs o and o' for D(i) and D'(i) respectively.

If D(i) ≠ D'(i), accept the input i and include it in the set T = T ∪ {<i, o>} (good test case)

 If D(i) = D'(i), reject input i and move to step 2.

In the next Chapter, we discuss the evaluation of our proposed approach to a number of case

studies.

41

CHAPTER 5

Case Studies and Evaluation

5.1 Overview

In this Chapter, we demonstrate example applications of test case generation based on OCL Fault

Injection algorithm discussed in Chapter 4. We evaluate test case generation approach with an

open source PHP LDAP web application Self Service Password [46] which has been reported to

contain LDAP injection vulnerability in Open Source Vulnerability Database (OSVDB) [47].

Moreover, we demonstrate our approach for a developed web application having LDAP injection

vulnerabilities. We deploy both applications in an Apache web server having phpLDAPadmin

configured appropriately [48].

5.2 Case Study 1: Self Service Password (Login Bypass, Information Disclosure)

Self Service Password can be used to reset the password of an LDAP entity (common entity or

cn). We have used the source code of Self Service Password related to password change

functionalities to generate the pre and post-conditions. We find that there are three ways to

change password: reset by security questions, reset by old and new password and reset by

sending token in email. We evaluate our approach for reset by sending token in email option.

We first show the legitimate way of password reset in Figure 21. We assume that user Sam Price

has a legitimate login ID as sprice with a valid email ID given as x@xyz.com. The reset password

link will be sent to the email ID and the user can change his password by clicking on the link

provided in the email.

Figure 22 shows that an attacker can access the password reset link by providing input

containing wild card character (sp*) in the login ID field and email as x@xyz.com. Figure 23

shows that providing the above inputs result in receiving a password reset link (with token

information). This attack is an example of information disclosure and may further lead to login

bypass type of LDAP injection attack.

42

Figure 21: Correct technique of changing password in Self Service Password

Figure 22: Attacker using '*' wildcard to access the system

43

Figure 23: Confirmation email sent to the attacker

We now discuss the process for generation of pre and post-conditions (presented in Chapter 4).

The PHP code for vulnerable version of Self Service Password application is shown in Figure 24.

Process for Generation of pre and post-conditions

Step 1: The PHP code of the vulnerable version of Self Service Password is shown in Figure 24.

Here, Lines 2 and 8 retrieve Email ID and Login ID. Lines 22-24 use the login and email to form

LDAP query. Line 22 replaces the occurrence of the text '{login}' in variable '$ldap_filter'

with the value that is assigned to the variable '$login' which is the user entered value in login

field. Line 22 is not filtering out the meta characters which becomes the part of LDAP search and

leads to LDAP injection attacks. Line 13 connects with LDAP server, and Line 17 executes the

generated LDAP query.

...

1. if (isset($_POST["mail"]) and $_POST["mail"]){

2. $mail = $_POST["mail"];

3. }

4. else {

5. $result = "mailrequired";

6. }

7. if (isset($_REQUEST["login"]) and $_REQUEST["login"]) {

8. $login = $_REQUEST["login"];

9. }

10.else {

11. $result = "loginrequired";

12.}

// omitted code ...

13. $ldap = ldap_connect($ldap_url);

44

14. ldap_set_option($ldap, LDAP_OPT_PROTOCOL_VERSION, 3);

15. ldap_set_option($ldap, LDAP_OPT_REFERRALS, 0);

16. if (isset($ldap_binddn) && isset($ldap_bindpw)) {

17. $bind = ldap_bind($ldap, $ldap_binddn, $ldap_bindpw);

18. }

19. else {

20. $bind = ldap_bind($ldap);

21. }

// omitted code ...

22. $ldap_filter = str_replace("{login}", $login, $ldap_filter);

23. $search = ldap_search($ldap, $ldap_base, $ldap_filter);

// omitted code ...

24. $mailValues = ldap_get_values($ldap, $entry, $mail_attribute);

// omitted code ...

Figure 24: PHP code for vulnerable version of Self Service Password application

Based on source code, we derive the class diagram as shown in Figure 25. Here, we show three

classes each representing password change for three different ways. In particular, password reset

by email has four attributes (loginid, emailid, logincount, emailcount) and three methods

(isValid(), isRegistered() and isTokenSent()).

Figure 25: Class diagram for Self Service Password application

45

Step 2: We develop a flow chart as shown in Figure 26 for email token-based password reset

functionality. Here, a rectangle means steps (input or output), an ellipse means the start or end

state and a diamond is a decision making step where testing of conditions are performed.

46

Figure 26: Flowchart for password change based on reset token sent via email

47

Step 3: Figure 26 shows various paths related to both successful and unsuccessful password

change by token sent to email. For example, the path showing successful password change

requires that Login ID and Email ID be not empty (loginid ≠ empty AND emailid ≠ empty),

Email ID is valid syntactically (isValid(emailid)), Email and Login ID counts are one, and Email

ID belongs to known registered email address (isRegisteredEmail(emailid)). The post-condition

is receiving a token by Email (captured as isTokenSent=TRUE). Similarly, we can capture pre

and post-conditions for other paths that would result in error message (total five paths). We can

obtain a set of pre and post-conditions for all six paths (P1-P6).

Step 4: Table 5 shows the combined pre and post-conditions for each of the six paths based on

Figure 26. There is no duplicate condition, so no reduction of conditions needs to be performed.

Table 5: Pre and post-conditions for Self Service Password

Path pre-conditions post-conditions

P1 (Success)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

isTokenSent()

P2 (Error1) !(loginid ≠ empty ∧ emailid ≠ empty) !isTokenSent()

P3 (Error2)
(loginid ≠ empty ∧ emailid ≠ empty) ∧

!isValid(email)
!isTokenSent()

P4 (Error3)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid(email) ∧

!(emailCount = 1 ∧ loginCount = 1)

!isTokenSent()

P5 (Error4)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

!isRegisteredEmail (emailid)

!isTokenSent()

P6 (Error5)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

!isRegisteredEmail (emailid) ∧

!isTokenSent()

N/A

Now, we apply fault injection for each of the obtained pre-conditions (which becomes part of D)

to generate test cases. Below we illustrate the test case generation for path P1. Similarly, we can

apply for paths P2 - P6. Next, we apply the three steps of Fault adequate test case generator

Algorithm (discussed in Chapter 4).

48

Algorithm: Fault adequate test case generator

Step 1: From D we obtain D'. We generate altered pre-conditions (pre'). Table 6 shows five

examples of altered pre-conditions (pre') for P1 where we replaced ∧ with ∨ randomly. This is

not an exhaustive list of all possible pre' but we show some examples for illustrative purposes.

Each expression relates to two input variables (or test inputs) represent two fields: loginid and

emailid. We assume that valid emailid is x@xyz.com and valid loginid is sprice. We also assume

that * is an invalid character and is not permitted as any part of the inputs for this application.

These set of valid inputs along with meta-characters will be combined to generate test cases that

we discuss next.

Table 6: Altered pre-conditions for Self Service Password (P1)

Example pre pre'

1

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∨ loginCount = 1) ∧

isRegisteredEmail (emailid)

2

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∨ loginCount = 1) ∨

isRegisteredEmail (emailid)

3

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

(loginid ≠ empty ∧ emailid ≠ empty) ∨

isValid (email) ∨

(emailCount = 1 ∨ loginCount = 1) ∨

isRegisteredEmail (emailid)

4

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

(loginid ≠ empty ∧ emailid ≠ empty) ∨

isValid (email) ∨

(emailCount = 1 ∨ (loginCount = 1) ∨

isRegisteredEmail (emailid)

5

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∧ loginCount = 1) ∧

isRegisteredEmail (emailid)

(loginid ≠ empty ∧ emailid ≠ empty) ∧

isValid (email) ∧

(emailCount = 1 ∨(loginCount = 1) ∧

isRegisteredEmail (emailid)

Step 2: The loginid in input i1 is sp* and emailid is a legitimate emailid given as x@xyz.com. For

checking if generated test input i1, from step 1 can satisfy pre ∨ pre’, we do further analysis as

shown in Table 7. Here, the second column shows a set of test inputs (i). Columns 3 and 4 in

Table 7 show whether the test input i satisfies pre and pre’. Column 5 shows that i1 satisfies pre

∨ pre’ based on step 2 in the algorithm.

49

Step 3: Then, we apply each of the inputs i1-i5 in columns 6 and 7 to obtain output from original

program (D) and altered program (D’) under o and o’, respectively. The last column indicates if

the particular test case can be included in set T or not. A test input is added when o and o’are

dissimilar.

Table 7: Generation of test cases with altered pre and post-conditions for Self Service Password

(P1)

From Table 7, the first four test cases are added in test set T, and it is being enhanced T = T ∪

{(i1, o1), (i2, o2), (i3, o3), (i4, o4)} with vulnerability revealing test cases {< i1, o1>, < i2, o2>, < i3,

o3>, < i4, o4>}.

We now discuss more on each of the test inputs. For example, we assume that the loginid in

input i1 is given as sp* and the emailid is registered in the system. The loginid in input i2 is given

as sp* and the emailid is not registered in the system. Input i3 is given as a legitimate loginid

sprice and the emailid is *. Input i4 has loginid as sp* and the emailid is *.

In Table 7, rows 1, 2, 3 and 4 show input i. Columns 3 and 4 show whether i satisfies pre and

pre' (not satisfied for pre, satisfied for pre'). Column 5 shows that i satisfies pre ∨ pre' based on

Input
pre

satisfied?

pre'

satisfied?

pre

∨

pre'

Output D(i) Output D'(i)
Include in

set T?

1

i1:

loginid = "sp*",

emailid =

"x@xyz.com"

No Yes Yes

o1:
isTokenSent =

FALSE

o'1:

isTokenSent =

TRUE
Yes

2

i2:
loginid = "sp*",

emailid =
"p@xyz.com"

No Yes Yes

o2:
isTokenSent =

FALSE

o'2:

isTokenSent =

TRUE
Yes

3
i3:

loginid = "sprice",

emailid = "*"

No Yes Yes
o3:

isTokenSent =

FALSE

o'3:
isTokenSent =

TRUE
Yes

4
i4:

loginid = "sp*",

emailid = "*"

No Yes Yes

o4:
isTokenSent =

FALSE

o'4:

isTokenSent =

TRUE
Yes

5

i5:
loginid = "sprice",

emailid =

"x@xyz.com"

Yes Yes Yes

o5:
isTokenSent =

TRUE

o'5:

isTokenSent =

TRUE
No

50

step 2 in the algorithm. Then, we apply input i in columns 6 and 7 to obtain output from D and

D’. The last column indicates if the particular test case can be included in set T or not, based on

conditions in step 4 (included for i1 - i4).

For the last input i5, we assume that the loginid is sprice and emailid is x@xyz.com, which are

both valid. Though the input satisfies both pre and pre', the output after applying to D and D’

become the same. Thus, it is not added in test set T.

Therefore, the final test set T after applying the algorithm results in selected test inputs as

follows: {<sp*, x@xyz.com>, <sp*, p@xyz.com>, <sprice, *>, <sp*, *>}. As we apply these

generated test inputs on the target application, we find that i1, i2, and i4 have the capability of

revealing login bypass injection attacks, and i3 can be applied for discovering privilege escalation

attack.

Note that all test cases may not be suitable for discovering vulnerabilities. Further, multiple test

cases may reveal the same vulnerability (e.g., both i1 and i2 can reveal login bypass attack). Our

approach enables developers to consider critical program input variables and program paths that

can contribute to LDAP injection vulnerabilities. Thus, our approach can generate and select

effective test cases revealing LDAP injection attacks based on altered program path constraints

expressed in OCL.

5.3 Case study 2: Custom Web Application (Login Bypass)

In this Section, we demonstrate the test case generation for Login Bypass injection attack. First

we show the process for generation of pre and post-conditions.

Process for Generation of pre and post-conditions

Step 1: We develop a class diagram as shown in Figure 27 capturing the key class attributes in

the source code.

51

Figure 27: Class diagram for Custom application (Login Bypass)

Step 2: We develop a flow chart as shown in Figure 28 for login bypass LDAP injection attack

type. Here, a rectangle means steps (input or output), an ellipse means the start or end state and a

diamond is a decision making step where testing of conditions are performed.

Step 3: Figure 28 shows various paths related to both successful and unsuccessful login bypass

operation. For example, the path showing successful password change requires that Login ID and

Password be not empty (loginid ≠ empty AND password ≠ empty), Login ID is valid

syntactically (isValid(loginid)), Login ID count is one, and Password matches to the Login ID of

the particular user (isMatching(password)). The post-condition is user login (captured as

isLogin=TRUE). Similarly, we can capture pre and post-conditions for other paths that would

result in error message (total five paths). We can obtain a set of pre and post-conditions for all

six paths (P1-P6).

52

Figure 28: Flowchart for login bypass type of LDAP injection attack

Step 4: Table 8 shows the combined pre and post-conditions for each of the six paths based on

Figure 28. There is no duplicate condition, so no reduction of conditions needs to be performed.

53

Table 8: Pre and post-conditions for Login Bypass

Path pre-conditions post-conditions

P1 (Success)

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧ loginCount = 1 ∧

isMatching (password)

isLogin()

P2 (Error1) !(loginid ≠ empty ∧ password ≠ empty) !isLogin()

P3 (Error2)
(loginid ≠ empty ∧ password ≠ empty) ∧

!isValid(loginid)
!isLogin()

P4 (Error3)

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid(loginid) ∧

!(loginCount = 1)

!isLogin()

P5 (Error4)

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧

(loginCount = 1) ∧

!isMatching (password)

!isLogin()

P6 (Error5)

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧

(loginCount = 1) ∧

!isMatching (password) ∧

!isLogin()

N/A

Now, we apply the three steps of Fault adequate test case generator Algorithm to illustrate the

test case generation for path P1 (Table 8).

Algorithm: Fault adequate test case generator

Step 1: From D we obtain D'. We generate altered pre- conditions (pre'). Table 9 shows two

examples of altered pre-conditions (pre') for P1 where we replaced ∧ with ∨ randomly. Table 9

shows two examples (non-exhaustive) of pre' that we generate by randomly substituting AND

with OR in pre (changes are shown in bold in the third column). Each expression relates to two

input variables (or test inputs) represent two fields: loginid and password. We assume that valid

emailid is x@xyz.com and valid loginid is sprice. We also assume that * is an invalid character

and is not permitted as any part of the inputs for this application. These set of valid inputs along

with meta-characters will be combined to generate test cases that we discuss next.

54

Table 9: Altered pre-conditions and test inputs for Login Bypass (P1)

Example pre pre'

1

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧ loginCount = 1 ∧

isMatching (password)

(loginid ≠ empty ∧ password ≠ empty) ∨

isValid (loginid) ∨ loginCount = 1 ∨

isMatching (password)

2

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧ loginCount = 1 ∧

isMatching (password)

(loginid ≠ empty ∧ password ≠ empty) ∧

isValid (loginid) ∧ loginCount = 1 ∨

isMatching (password)

Step 2: The loginid in input i1 is given as *)(uid=*))(|(uid=*) and password is given as abcdef.

For checking if generated test input i1, from step 1 can satisfy pre ∨ pre’, we do further analysis

as shown in Table 10. Here, the second column shows a set of test inputs (i). Columns 3 and 4 in

Table 10 show whether the test input i satisfies pre and pre’. Column 5 shows that i1 satisfies pre

∨ pre’ based on step 2 in the algorithm.

Step 3: Then, we apply each of the inputs i1 - i2 in columns 6 and 7 to obtain output from original

program (D) and altered program (D’) under o and o’, respectively. The last column indicates if

the particular test case can be included in set T or not. A test input is added when o and o’are

dissimilar. From Table 10, the first test case can be added in test set T, and it is being enhanced T

= T ∪ {i1, o1} with vulnerability revealing test case < i1, o1>.

Table 10: Generation of test cases with altered pre and post-conditions for Login Bypass (P1)

For example, we assume that the loginid in input i2 is given as sprice and the password is a

legitimate password as prices. Though the input satisfies both pre and pre', the output after

applying it on D and D’ remains the same. Thus, test input i2 is not added in test set T.

Input
pre

satisfied?

pre'

satisfied?

pre

∨

pre'

Output

D(i)

Output

D'(i)

Include

in set T?

1

i1:
loginid =

"*)(uid=*))(|(uid=*)",

password = "abcdef"

No Yes Yes

o1:
isLogin

= TRUE

o'1:

isLogin =

FALSE
Yes

2
i2:

loginid = "sprice",

password = "prices"

Yes Yes Yes

o2:
isLogin

= TRUE

o'2:

isLogin =

TRUE
No

55

Therefore, the final test set T after applying the algorithm results in selected test input and output

as: {<*)(uid=*))(|(uid=*), abcdef>}. As we apply this generated test inputs on the target

application, we find that i1 has the capability of revealing login bypass injection attack.

5.4 Case study 3: Custom Web Application (Privilege Escalation)

In this Section, we demonstrate the test case generation for Privilege Escalation type of LDAP

injection attack. We apply the process for generation of pre and post-conditions below.

Process for Generation of pre and post-conditions

Step 1: We develop a class diagram as shown in Figure 29 capturing the key class attributes in

the source code.

Figure 29: Class diagram for Custom application (Privilege Escalation)

Step 2: We develop a flow chart as shown in Figure 30 for privilege escalation LDAP injection

attack type. Here, a rectangle means steps (input or output), an ellipse means the start or end state

and a diamond is a decision making step where testing of conditions are performed.

Step 3: Figure 30 shows various paths related to both successful and unsuccessful privilege

escalation scenarios.

56

Figure 30: Flowchart for privilege escalation type of LDAP injection attack

Step 4: Table 11 shows the combined pre and post-conditions for each of the five paths based on

Figure 30. There is no duplicate condition, so no reduction of conditions needs to be performed.

57

Table 11: Pre and post-conditions for Privilege Escalation

Path pre-conditions post-conditions

P1 (Success)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∧ isOu(loginid) =

Ou(document) ∧ isSecuritylevel(loginid) =

Securitylevel(document)

Display

Documents

P2 (Error1) !(loginid ≠ empty ∧ ou ≠ empty)
Display

Documents fail

P3 (Error2)
(loginid ≠ empty ∧ ou ≠ empty) ∧

!(getSecuritylevel() ∧ ou ≠ empty)

Display
Documents fail

P4 (Error3)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∧ !(isOu(loginid) =

Ou(document))

Display

Documents fail

P5 (Error4)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∧ isOu(loginid) =

Ou(document) ∧ !(isSecuritylevel(loginid) =

Securitylevel(document))

N/A

Now, we apply the three steps of Fault adequate test case generator Algorithm for paths P1 and

P3.

Algorithm: Fault adequate test case generator

Step 1: We generate altered pre-conditions (pre'). Table 12 shows three examples of altered pre-

conditions (pre') where the first and second rows correspond to P1 and the third row corresponds

to P3. Here, we randomly replaced ∧ with ∨ (changes are shown in bold font in the third

column). Each expression relates to two input variables (or test inputs) represent two fields:

loginid and ou. We assume that valid emailid is x@xyz.com and valid loginid is sprice. We also

assume that * is an invalid character for this application. These set of valid inputs along with

meta-characters will be combined to generate test cases that we discuss next.

58

Table 12: Altered pre-conditions and test inputs for Privilege Escalation (P1 and P3)

Example pre pre'

1

(P1)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∧

isOu(loginid) = Ou(document) ∧

isSecuritylevel(loginid) =

Securitylevel(document)

(loginid ≠ empty ∧ ou ≠ empty) ∨

(getSecuritylevel() ∧ ou ≠ empty) ∧

isOu(loginid) = Ou(document) ∧

isSecuritylevel(loginid) =

Securitylevel(document)

2

(P1)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∧

isOu(loginid) = Ou(document) ∧

isSecuritylevel(loginid) =

Securitylevel(document)

(loginid ≠ empty ∧ ou ≠ empty) ∧

(getSecuritylevel() ∧ ou ≠ empty) ∨

isOu(loginid) = Ou(document) ∨

isSecuritylevel(loginid) =

Securitylevel(document)

3

(P3)

(loginid ≠ empty ∧ ou ≠ empty) ∧

!(getSecuritylevel() ∧ ou ≠ empty)

(loginid ≠ empty ∧ ou ≠ empty) ∨

!(getSecuritylevel() ∧ ou ≠ empty)

Step 2: The loginid in input i1 is given as sprice and ou is given as *. For checking if generated

test input i1, from step 1 can satisfy pre ∨ pre’, we do further analysis as shown in Table 13.

Here, the second column shows a set of test inputs (i). Columns 3 and 4 in Table 13 show

whether the test input i satisfies pre and pre’. Column 5 shows that i1 satisfies pre ∨ pre’ based

on step 2 in the algorithm.

Step 3: We apply each of the inputs i1 - i3 in columns 6 and 7 (Table 13) to obtain output from

original program (D) and altered program (D’) under o and o’, respectively. The last column

indicates if the particular test case can be included in set T or not, based on conditions in step 4.

A test input is added when o and o’are dissimilar. From Table 13, test cases 1 and 2 can be

added in test set T, and it is being enhanced T = T ∪ {(i1, o1), (i2, o2)} with vulnerability revealing

test cases {< i1, o1>, < i2, o2>}.

Let us consider the example shown in the first row (Table 13). The loginid is given as sprice and

ou is given as *. Columns 3 and 4 show whether i satisfies pre and pre' (not satisfied for pre,

satisfied for pre'). Column 5 shows that i satisfies pre ∨ pre' based on step 2 in the algorithm.

Then, we apply input i1 in columns 6 and 7 to obtain output from D and D’. The last column

indicates if the particular test case can be included in set T or not, which indicates that i1 can be

included as a test case. Similarly, i2 can be included in set T.

59

Table 13: Generation of test cases with altered pre and post-conditions for Privilege Escalation (P1

and P3)

Let us consider the third example. We assume that loginid is sprice and ou is SalesRep. Though

the input satisfies both pre and pre', the output after applying on D and D’ remains the same.

Thus, it is not added in test set T.

Therefore, the final test set T after applying Fault adequate test case generator Algorithm results

in test input and output as: {<sprice,*>, <sp*,*>}. As we apply this generated test inputs on the

target application, we find that i1 and i2 have the capability of revealing privilege escalation

injection attacks.

5.5 Case study 4: Custom Web Application (Information Alteration)

In this Section, we demonstrate the test case generation for Information Alteration type of LDAP

injection attack. We apply the four steps of process for generation of pre and post-conditions

below.

Process for Generation of pre and post-conditions

Step 1: We develop a class diagram as shown in Figure 31 capturing the key class attributes in

the source code.

Input
pre

satisfied?

pre'

satisfied?

pre

∨

pre'

Output D(i) Output D'(i)
Include

in set T?

1
i1:

loginid = " sprice ",

ou = "*"

No Yes Yes

o1:
Display Documents

= FALSE

o'1:

Display Documents

fail = TRUE
Yes

2
i2:

loginid = " sp* ",

ou = "*"

No Yes Yes

o2:
Display Documents

= FALSE

o'2:

Display Documents

fail = TRUE
Yes

3
i3:

loginid = "sprice"

ou = "SalesRep"

Yes Yes Yes

o3:
Display Documents

= TRUE

o'3:

Display Documents

= TRUE
No

60

Figure 31: Class diagram for Custom application (Information Alteration)

Step 2: We develop a flow chart as shown in Figure 32 for information alteration LDAP

injection attack type. Here, a rectangle means steps (input or output), an ellipse means the start or

end state and a diamond is a decision making step where testing of conditions are performed.

Step 3: Figure 32 shows various paths related to both successful and unsuccessful information

alteration scenarios.

61

Figure 32: Flowchart for information alteration type of LDAP injection attack

Step 4: Table 14 shows the combined pre and post-conditions for each of the four paths based on

Figure 32. There is no duplicate condition, so no reduction of conditions needs to be performed.

62

Table 14: Pre and post-conditions for Information Alteration

Path pre-conditions post-conditions

P1 (Success)
(replacewith ≠ empty ∧ dn ≠ empty) ∧

isValid(dn) ∧ (isOu(loginid) = Ou(dn))
Replace Entry

P2 (Error1) !(replacewith ≠ empty)
Replace Entry

fail

P3 (Error2) !(dn ≠ empty)
Replace Entry

fail

P4 (Error3) !(isValid(dn))
Replace Entry

fail

P5 (Error4) !(isOu(loginid) = Ou(dn)) N/A

Now, we apply the three steps of Fault adequate test case generator Algorithm for path P1.

Algorithm: Fault adequate test case generator

Step 1: From D we obtain D'. We generate altered pre- conditions (pre'). Table 15 shows two

examples of altered pre-conditions (pre') for P1 where we replaced ∧ with ∨ randomly. This is

not an exhaustive list of all possible pre' but we show some examples for illustrative purposes.

Each expression relates to two input variables (or test inputs) represent two fields: replacewith

and dn. We assume that valid dn is uid=sprice, cn=SalesRep, ou=Sales,dc=ubuntuldap2. We

also assume that * is an invalid character and is not permitted as any part of the inputs for this

application. These set of valid inputs along with meta-characters will be combined to generate

test cases that we discuss next. We discuss the input i1 in which a document is being replaced.

Step 2: The replacewith in input i1 is given as randomlink and dn is given as uid=jreed,

cn=SeniorMgmt, ou=SeniorMgmt, dc=ubuntuldap2. For checking if generated test input i1,

from step 1 can satisfy pre ∨ pre’, we do further analysis as shown in Table 16. Here, the

second column shows a set of test inputs (i). Columns 3 and 4 in Table 16 show whether the test

input i satisfies pre and pre’. Column 5 shows that i1 satisfies pre ∨ pre’.

63

Table 15: Altered pre-conditions and test inputs for Information Alteration (P1)

Example pre pre'

1

(replacewith ≠ empty ∧

dn ≠ empty) ∧

isValid(dn) ∧

(isOu(loginid) = Ou(dn))

(replacewith ≠ empty ∧

dn ≠ empty) ∨

isValid(dn) ∧

(isOu(loginid) = Ou(dn))

2

(replacewith ≠ empty ∧

dn ≠ empty) ∧

isValid(dn) ∧

(isOu(loginid) = Ou(dn))

(replacewith ≠ empty ∨

dn ≠ empty) ∨

isValid(dn) ∧

(isOu(loginid) = Ou(dn))

Step 3: We apply each of the inputs i1 and i2 in columns 6 and 7 to obtain output from original

program (D) and altered program (D’) under o and o’, respectively. The last column indicates if

the particular test case can be included in set T or not. A test input is added when o and o’ are

dissimilar.

From Table 16, the first test case can be added to test set T, and it is being enhanced T = T ∪ {i1,

o1} with vulnerability revealing test case < i1, o1>.

Table 16: Generation of test cases with altered pre and post-conditions for Information Alteration

(P1)

For example, we assume that the replacewith in input i2 is given as correctlink and the dn is the

dn of the user logged in. Though the input satisfies both pre and pre', the output after applying it

on D and D’ remains same. Thus, it is not added to test set T.

#

Input

pre

satisfied?

pre'

satisfied?

pre

∨

pre'

Output D(i) Output D'(i)

Include

in set

T?

1

i1:
replacewith = "randomlink"

dn = "uid=jreed,cn=SeniorMgmt,ou=

SeniorMgmt,dc=ubuntuldap2"

No Yes Yes

o4:
ReplaceEntry

= TRUE

o'4:

ReplaceEntry

= FALSE
Yes

2

i2:
replacewith = "correctlink"

dn = "uid=jreed,cn=SeniorMgmt,ou=
SeniorMgmt,dc=ubuntuldap2"

Yes Yes Yes

o5:
isLogin =

TRUE

o'5:

isLogin =

TRUE
No

64

Therefore, the final test set T after applying the algorithm results in test input and output as:

{<replacewith="randomlink";dn=uid=jreed,cn=SeniorMgmt,ou=SeniorMgmt,dc=ubuntuldap2>}.

As we apply this generated test inputs on the target application, we find that i1 has the capability

of revealing information alteration injection attack.

Thus, our approach enables developers to generate effective test cases based on OCL fault

injection approach to detect LDAP injection vulnerabilities.

The next Chapter demonstrates tool implementation in which we have automated the process of

random OR replacement.

65

CHAPTER 6

Tool Implementation

6.1 Overview

In this Chapter, we demonstrate a tool which can be used for the selection of test cases. The test

cases mentioned earlier in Chapter 5 were generated manually. We demonstrate implementation

of tool by using Self Service Password and Login Bypass case studies (mentioned earlier in

Chapter 5, Section 5.2 and 5.3) as examples. We apply a common measure to assess the quality

of generated test cases called Mutation Score (MS) [49]. It is the ratio between the number of test

cases included in the test set T to the total number of test cases generated. The Mutation Score is

affected by the combination of user inputs. When the input values include high number of

erroneous (invalid) inputs, the algorithm tends to generate high number of test cases to be

included in the test set T. For example, when the user inputs are all valid, the number of

generated test cases that can be included in the test set T are either zero or a minimum number

possible. This leads to a low mutation score. On the other hand, when the inputs are all invalid, it

is most likely that all or a high number of generated test cases are included in the test set T,

leading to a high mutation score.

6.2 Tool implementation for Self Service Password

Example 1:

First, we have the questions based on the application of Self Service Password. We defined six

attributes based on the application implementation to represent pre-conditions. Depending upon

the options selected at this point, the tool randomly substitutes AND with OR and provides us all

the possible combinations for this substitution. Developers are required to generate initial test

cases that can satisfy the generated constraints.

66

Figure 33: Questions based on Self Service Password application

Figure 34: Selected options for Self Service Password application (Example 1)

For example, the options are selected as shown in Figure 34. For the given selection an example

input can be Login: sp*; Email: x@xyz.com.

67

Boolean values are assigned to each entity (field) as shown in Figure 35. These values are based

on the selection from the previous page. Also, our pre-condition for the Self Service password

application is [(a ∧ b) ∧ c ∧ (d ∧ e) ∧ f] which should be satisfied for a successful operation.

Figure 35: Assigned Boolean values based on selection (Example 1)

Once we have the Boolean values assigned depending on the given selection, the options

available for logical OR Replacements are shown in Figure 36.

Figure 36: Available OR replacement options

Let us check the selection of test cases for each OR replacement option.

68

4 OR Replacement Result Set:

Based on the last column of the 4 OR Replacement screenshot, all test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

5/5 or 100%.

3 OR Replacement Result Set:

69

Based on the last column of the 3 OR Replacement screenshot, all test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

10/10 or 100%.

2 OR Replacement Result Set:

Based on the last column of the 2 OR Replacement screenshot, eight test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

8/10 or 80%.

1 OR Replacement Result Set:

70

Based on the last column of the 1 OR Replacement screenshot, two test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

2/5 or 40%.

Example 2:

First, we have the questions based on the application of Self Service Password. For example, the

options are selected as shown in Figure 37.

Figure 37: Selected options for Self Service Password application (Example 2)

Boolean values are assigned to each entity (field) as shown in Figure 38. These values are based

on the selection from the previous page. Also, our pre-condition for the Self Service password

application is [(a ∧ b) ∧ c ∧ (d ∧ e) ∧ f] which should be satisfied for a successful operation.

71

Figure 38: Assigned Boolean values based on selection (Example 2)

Let us check the selection of test cases for each OR replacement option.

4 OR Replacement Result Set:

Based on the last column of the 4 OR Replacement screenshot, all test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

5/5 or 100%.

72

3 OR Replacement Result Set:

Based on the last column of the 3 OR Replacement screenshot, nine test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

9/10 or 90%.

73

2 OR Replacement Result Set:

Based on the last column of the 2 OR Replacement screenshot, seven test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

7/10 or 70%.

1 OR Replacement Result Set:

Based on the last column of the 1 OR Replacement screenshot, two test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

2/5 or 40%.

74

6.3 Tool implementation for Custom web application (Login Bypass)

First, we have the questions based on custom web application for Login Bypass. We defined

three attributes based on the implementation to represent pre-conditions. Depending upon the

options selected at this point, the tool helps us randomly substituting AND with OR and gives us

all the possible combinations for this substitution.

Figure 39: Questions based on custom web application for Login Bypass

Figure 40: Selected options for Self Service Password application

For example, the options are selected as shown in Figure 40. For the given selection an example

input can be Login: sprice; Password: (empty)

Boolean values are assigned to each entity (field) as shown in Figure 41. These values are based

on the selection from the previous page. Also, our pre-condition for custom application for login

bypass is [(a ∧ b) ∧ c] which should be satisfied for a successful operation.

75

Figure 41: Assigned Boolean values based on selection

Once we have the Boolean values assigned depending on the given selection, the options

available for logical OR Replacements are shown in Figure 42.

Figure 42: Available OR replacement option

Let us check the selection of test cases for OR replacement option.

1 OR Replacement Result Set:

76

Based on the last column of the 1 OR Replacement screenshot, all test cases are relevant to

detect an attack, therefore are included in the test set T. This leads to a Mutation Score (MS) of

2/2 or 100%.

Thus, the developed tool helps in selection of test cases which might be vulnerable to injection

attacks, thereby allowing developers to develop secure web applications.

In the next Chapter, we present the dissemination of our research results.

77

CHAPTER 7

Dissemination of Research Results

This chapter shows dissemination of thesis results as poster presentations and conference papers.

Below we list the title, abstract, and venue for each dissemination.

Detection of Lightweight Directory Access Protocol Query Injection attacks in Web

Applications

Pranahita Bulusu, Hossain Shahriar and Hisham Haddad.

Poster presentation. Kennesaw State University - Computer Science Student Expo 2015, Marietta,

GA, USA, December 2015

OCL Fault Injection-Based Testing of LDAP Query Injection Attacks

Pranahita Bulusu, Hossain Shahriar and Hisham Haddad.

Conference paper submission in progress.

Abstract

LDAP is a directory access protocol commonly used in web applications to provide lookup

information and enforcing authentication mechanism. However, poorly implemented web

applications suffer from LDAP injection vulnerabilities that might lead to security breaches

such as login bypassing, privilege escalation, information disclosure, and information

alteration. Testing for the presence of LDAP injection attacks can help to discover

vulnerabilities early and fix implementation. Towards this direction, generating effective test

cases is important and requires systematic approach. This paper proposes fault injection-

based testing of LDAP injection attacks based on program implementation. We extract design

level information and constraints (in the form of pre-conditions and post-conditions)

highlighting behaviors that should be maintained throughout application runtime. We express

the constraints using a popular modeling language called OCL. We randomly alter the

captured pre-conditions and post-conditions and solve them to generate suitable test cases

that may have the capability to check for the presence of LDAP injection vulnerabilities. We

proposed needed algorithms to implement our test case generation approach. We did an initial

case study for an open source PHP application. The analysis shows that our approach can

generate effective test cases to discover LDAP injection vulnerabilities.

78

Classification of Lightweight Directory Access Protocol Query Injection Attacks and

Mitigation Techniques

Pranahita Bulusu, Hossain Shahriar and Hisham Haddad.

Conference Proceedings. Proceedings of 2015 International Conference on Collaboration

Technologies and Systems (CTS 2015), Atlanta, GA, USA, June 2015, IEEE CS Press, pp. 337-

344, ISBN: 978-1-4673-7648-8/15

Abstract

The Lightweight Directory Access Protocol (LDAP) is used in a large number of web

applications, and therefore, different types of LDAP injection attacks are becoming common.

These injection attacks take advantage of an application not validating inputs before being

used as part of LDAP queries. An attacker can provide inputs that may result in the alteration

of intended LDAP query structure. The attacks can lead to various types of security breaches

including Login Bypassing, Information Disclosure, Privilege Escalation, and Information

Alteration. Despite many research efforts to prevent LDAP injection attacks, many web

applications remain vulnerable to such attacks. In particular, there has been little attention

given to implement and test secure web applications that can mitigate LDAP query injection

attacks. More attention has been given to prevent Structured Query Language (SQL) injection

attacks but these mitigation techniques cannot be directly applied in order to prevent LDAP

injection attacks. This work provides analysis and classification of various types of LDAP

injection attacks and mitigation techniques used to prevent them, and it highlights the

differences between SQL and LDAP injection attacks.

Abstract

LDAP is a directory access protocol commonly used in web applications to provide lookup

information and enforcing authentication mechanism. However, poorly implemented web

applications suffer from LDAP injection vulnerabilities that might lead to security breaches

such as login bypassing, privilege escalation, information disclosure, and information

alteration. Testing for the presence of LDAP injection attacks can help to discover

vulnerabilities early and fix implementation. Towards this direction, generating effective test

cases is important and requires systematic approach. This paper proposes fault injection-

based testing of LDAP injection attacks based on program implementation. We extract design

level information and constraints (in the form of pre-conditions and post-conditions)

highlighting behaviors that should be maintained throughout application runtime. We express

the constraints using a popular modeling language called OCL. We randomly alter the

captured pre-conditions and post-conditions and solve them to generate suitable test cases

that may have the capability to check for the presence of LDAP injection vulnerabilities. We

proposed needed algorithms to implement our test case generation approach. We did an initial

case study for an open source PHP application. The analysis shows that our approach can

generate effective test cases to discover LDAP injection vulnerabilities.

79

OCL Fault-Injection Based Testing of LDAP Query Injection Attacks

Pranahita Bulusu, Hossain Shahriar and Hisham Haddad.

Poster presentation. Kennesaw State University - Computer Science Student Expo 2015,

Kennesaw, GA, USA, April 2015

Lightweight Directory Access Protocol Query Injection Attacks in Web Applications

Pranahita Bulusu, Hossain Shahriar and Hisham Haddad.

Poster presentation. Kennesaw State University - Computer Science Student Expo 2014,

Kennesaw, GA, USA, December 2014

Abstract

LDAP is a popular protocol for Directory Service. Data objects are represented in

hierarchical form. Web applications relying on LDAP-based data object storing and retrieval

may suffer from injection attacks due to lack or improper input validation. Common LDAP

injection attacks include (i) Login Bypassing, (ii) Information Disclosure, (iii) Privilege

Escalation, and (iv) Information Alteration.

Abstract

LDAP is a popular protocol for Directory Service. Data objects are represented in

hierarchical form. Web applications relying on LDAP-based data object storing and retrieval

may suffer from injection attacks due to lack or improper input validation. Common LDAP

injection attacks include (i) Login Bypassing, (ii) Information Disclosure, (iii) Privilege

Escalation, and (iv) Information Alteration.

80

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

LDAP code injection vulnerability can be exploited to perform security breaches in web

applications such as login bypassing and privilege escalation. Among well-known code injection

attacks, LDAP injection has been least addressed and they do not share much similarities with

other types of injection attacks (e.g., SQL Injection) [6]. We proposed OCL fault injection based

testing approach to generate LDAP injection vulnerability revealing test cases. We extracted

design level information and constraints (in the form of pre and post-conditions) highlighting

behaviors that should be maintained throughout application runtime. We expressed the

constraints using a popular modeling language called OCL. We evaluated our approach with two

PHP web applications.

From the extensive survey we have done (Chapter 2), we find that most literature works are

intended for other common code injection attacks, but not specifically for LDAP. We find that

LDAP and SQL query have dissimilarities and attack inputs and contexts are also dissimilar.

Further, few literature works have mostly focused on login bypass type of attacks, leaving the

other three attacks types (information disclosure, privilege escalation, information alteration)

unaddressed.

We have proposed two algorithms in Chapter 4. The first algorithm addresses the generation of

pre and post-conditions from application source code where design level information is missing.

The outcome of the algorithm is a set of combined pre-conditions for various program paths. The

second algorithm then alters the pre-conditions with the goal of generating and selecting

effective test cases that can detect the presence of LDAP query injection vulnerabilities.

Chapter 5 illustrates the application of the algorithms for two PHP web applications, including

one having reported vulnerabilities (login bypass and information disclosure) based on OSVDB.

We built a custom web application to validate our approach for login bypass, privilege escalation

81

and information alteration type attacks. The evaluation indicates that our approach can generate

suitable test cases having specific inputs capable of revealing LDAP injection vulnerabilities.

Chapter 6 discusses the implementation of a tool to automate the generation of altered pre

conditions so that developers can assess if a given input is vulnerable to LDAP injection attacks.

The tools can support the replacement of one logical operator with another, and in multiple

locations of a given pre-condition. Developers can integrate our proposed OCL fault injection

based approach to detect LDAP query injection attacks.

The proposed approach is targeted for application developers to be able to generate test sets with

high mutation score so that included test cases can detect LDAP injection attacks with high

probability.

8.2 Future Work

Future work includes applying OCL fault-injection based testing approach to more web

applications and to test other types of code injection vulnerabilities. We plan to generalize our

implemented tool’s input taking mechanism so that users can specify their input fields and

constraints to generate pre-conditions. We like to automate the generation of initial test input and

alter pre-conditions for relational operators. Currently, our approach does not automatically

extract class design level information from source code. We plan to develop or employ suitable

tools for extracting design level information.

82

Appendix A: Source Code

Index.php

Login_action.php

<?php

set_time_limit(30);

error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

ini_set('display_errors',1);

// config

$ldapserver = '192.168.1.124';

$ldapuser = $_POST['userid'];

$ldappass = $_POST['password'];

$ldaptree = "dc=ubuntuldap2";

if (empty($ldapuser) || empty($ldappass)) {

 echo "Please enter the login credentials. Back";

} else {

// connect

$ldapconn = ldap_connect($ldapserver) or die("Could not connect to LDAP

server.");

ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);

if($ldapconn) {

 // binding to ldap server

 $ldapbind = ldap_bind($ldapconn, "cn=admin,".$ldaptree, "admin") or

die ("Please enter valid login credentials. Back ");

 // verify binding

 if ($ldapbind) {

<center>

 <h1>Log in to LDAP Server</h1>

 <form action="login_action.php" method="post">

 <input type="text" name="userid"/>

 <input type="password" name="password"/>

 <input type="submit" name="submit" />

 </form>

</center>

83

$search = "(&(&(uid=".$ldapuser.")(userPassword=".$ldappass.")))";

$sr=ldap_search($ldapconn, $ldaptree, $search);

$info = ldap_get_entries($ldapconn, $sr);

if ($info["count"] > 0) {

 echo "<center>";

 echo "You are logged in as: ".$ldapuser." Logout
";

 echo "<h2>Your details</h2>";

 $ii=0;

 for ($i=0; $ii<$info[$i]["count"]; $ii++){

 $data = $info[$i][$ii];

 echo

$data.": ".$info[$i][$data][0]."
";

 }

 $ou = $info[0]["ou"][0];

 $sec_level = $info[0]["description"][0];

 echo "<table border=1>";

 echo "<th colspan=2><h2>Main Menu</h2></th>";

 echo "<tr><td>Search for Users</td></tr>";

 echo "<tr><td><a

href='documents.php?uid=".$ldapuser."&ou=".$ou."&securitylevel=".$sec_lev

el."'>Available Documents</td></tr>";

 echo "<tr><td>Add User</td></tr>";

 echo "<tr><td>Replace</td></tr>";

 echo "<tr><td>Update</td></tr>";

 echo "<tr><td>Delete</td></tr>";

 echo "</table>";

 echo "</center>";

 } else {

 echo "<center>";

 echo "Please check your ID and Password";

 echo "</center>";

 }

 }

 }

// all done? clean up

ldap_close($ldapconn);

}

?>

84

Replace.php

<?php

set_time_limit(30);

error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

ini_set('display_errors',1);

// config

$ldapserver = '192.168.1.124';

$ldaptree = "dc=ubuntuldap2";

// connect

$ldapconn = ldap_connect($ldapserver) or die("Could not connect to LDAP

server.");

ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);

if($ldapconn) {

 // binding to ldap server

 $ldapbind = ldap_bind($ldapconn, "cn=admin,dc=ubuntuldap2", "admin")

or die ("Please enter valid login credentials. Back ");

 // verify binding

 if ($ldapbind) {

 echo "<center>";

 echo "<h2>Enter the Details</h2>";

 echo "<form action=replace_action.php method=post>";

 echo "<table border=1>";

 echo "<tr><td>ObjectClass</td><td><select

name=objectclass><option value=user>User</option><option

value=document>Document</option></select></td></tr>";

 echo "<tr><td>Replacing Object</td><td><select

name=replaceobj><option value=givenname>givenName</option><option

value=description>Description(If Document, paste

link)</option></select></td></tr>";

 echo "<tr><td>Replace With</td><td><input type=text

name=replace></td></tr>";

 echo "<tr><td>DN</td><td><input type=text

name=dn></td></tr>";

 echo "<tr><td colspan=2 align=center><input type=hidden

name=ou value=".$_GET['ou']."></td></tr>";

 echo "<tr><td colspan=2 align=center><input type=hidden

name=uid value=".$_GET['uid']."></td></tr>";

 echo "<tr><td colspan=2 align=center><input type=submit

name=submit value=Insert></td></tr>";

 echo "</table>";

 echo "</form>";

 echo "</center>";

 }

// all done? clean up

ldap_close($ldapconn);

}

?>

85

Replace_action.php

<?php

set_time_limit(30);

error_reporting(E_ALL);

ini_set('error_reporting', E_ALL);

ini_set('display_errors',1);

// config

$ldapserver = '192.168.1.124';

$ldaptree = "dc=ubuntuldap2";

// connect

$ldapconn = ldap_connect($ldapserver) or die("Could not connect to LDAP

server.");

ldap_set_option($ldapconn, LDAP_OPT_PROTOCOL_VERSION, 3);

ldap_set_option(NULL, LDAP_OPT_DEBUG_LEVEL, 7);

ldap_set_option($ldapconn, LDAP_OPT_REFERRALS, 0);

if($ldapconn) {

 // binding to ldap server

 $ldapbind = ldap_bind($ldapconn, "cn=admin,dc=ubuntuldap2", "admin")

or die ("Please enter valid login credentials. Back ");

 // verify binding

 if ($ldapbind) {

 $oc = $_POST['objectclass'];

 $uid = $_POST['uid'];

 $dn = $_POST['dn'];

 $oc = $_POST['objectclass'];

 $replaceobj = $_POST['replaceobj'];

 $replace = $_POST['replace'];

 $attr["$replaceobj"] = $replace;

 $result = ldap_mod_replace($ldapconn,$dn, $attr);

 if (TRUE === $result) {

 echo "Entry was replaced.";

 }

 else {

 echo "Entry cannot be replaced.";

 }

 }

// all done? clean up

ldap_close($ldapconn);

}

?>

86

References

[1] Introduction to OpenLDAP Directory Services, Accessed from

http://www.openldap.org/doc/admin24/intro.html

[2] LDAP open source guide, Accessed from

http://www.zytrax.com/books/ldap/ch2/index.html#history

[3] Open Web Application Security Project (OWASP), LDAP Injection,

https://www.owasp.org/index.php/LDAP_injection

[4] David Hoyt, LDAP Injection Vulnerability in SmarterMail, http://www.exploit-

db.com/exploits/15189/

[5] Vulnerable Applications for LDAP Injection –

http://security.stackexchange.com/questions/23032/vuln-web-app-which-includes-ldap-

injection

[6] Open Web Application Security Project (OWASP), SQL Injection,

https://www.owasp.org/index.php/SQL_Injection

[7] Open Web Application Security Project (OWASP) Top Ten 2013,

https://www.owasp.org/index.php/Top_10_2013-Top_10

[8] M. Kumar and L. Indu, “Detection and Prevention of SQL Injection attack,” Proceedings

of the International Journal of Computer Science and Information Technologies, Vol. 5 (1)

(IJCSIT), P. B. College of Engineering, Sriperumbudur, pages 374–377

[9] A. Liu, Yi Yuan, D. Wijesekera, and A. Stavrou, “SQLProb: A Proxy-based Architecture

towards Preventing SQL Injection Attacks,” Proceedings of the ACM/SIGAPP Symposium

On Applied Computing (SAC), Honolulu, Hawaii, USA, March 2009, pages 2054–2061

[10] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL injection vulnerability

checking,” Proceedings of IEEE Eighth International Conference on Quality Software

(QSIC), London, UK, August 2008, pages 77–86

[11] H. Shahriar and M. Zulkernine, “Information-Theoretic Detection of SQL Injection

Attacks,” Proceedings of IEEE 14th International Symposium on High-Assurance Systems

Engineering (HASE), Omaha, NE, USA, October 2012, pages 40–47

[12] G. Wassermann and Z. Su, “An Analysis Framework for Security in Web Applications,”

Proceedings of the FSE Workshop on Specification and Verification of Component-Based

Systems (SAVCBS 2004), 2004,pages 70–78

87

[13] N. DuPaul, LDAP Injection Guide, Veracode, https://www.veracode.com/ldap-

injection?mkt_tok=3RkMMJWWfF9wsRoiu6rfLqzsmxzEJ8zx7eUtWbHr08Yy0EZ5VunJ

EUWy3YYCWoEnZ9mMBAQZC813xR5ZGe%2BReQ%3D%3D

[14] E. Guillardoy, F. Guzman, and H. Abbamonte, “LDAP injection Attack and Defense

Techniques”, HITB Magazine, http://magazine.hitb.org/issues/HITB-Ezine-Issue-001.pdf

[15] S. Faust, “LDAP Injection: Are Your Applications Vulnerable?”, SPI Labs,

http://www.networkdls.com/articles/ldapinjection.pdf

[16] Testing for LDAP Injection, OWASP –

https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OTG-INPVAL-006)

[17] M. Hafiz and R. Johnson, “Improving Perimeter Security with Security-oriented Program

Transformations,” Proceedings of the IEEE Software Engineering for Secure Systems

(SESS), Vancouver, Canada, May 2009, pages 61–67

[18] M. Hafiz, “Security oriented program transformations (Or how to add security on

demand),” OOPSLA ’08: Companion to the 23rd annual ACM Special Interest Group on

Programming Languages (SIGPLAN)conference on Object oriented programming,

systems, languages, and applications, New York, NY, USA, 2004

[19] J. Xie, B. Chu, H. Lipford, and J. Melton, “ASIDE: IDE Support for Web Application

Security,” ACM Annual Computer Security Applications Conference (ACSAC), Orlando,

Florida USA, December 2011, pages 267–276

[20] Y. Zheng and X. Zhang, “Path Sensitive Static Analysis of Web Applications for Remote

Code Execution Vulnerability Detection,” IEEE International Conference on Software

Engineering (ICSE), San Francisco, CA, USA, 2013, pages 652–661

[21] M. Almorsy, J. Grundy, and A. Ibrahim, “Supporting Automated Vulnerability Analysis

Using Formalized Vulnerability Signatures,” ACM Automated Software Engineering (ASE)

conference, Essen, Germany, September 2012, pages 100–109

[22] OpenLDAP Security Considerations – http://www.openldap.org/doc/admin24/security.html

[23] Escaping special characters in LDAP search filters, Accessed from

http://blog.dzhuvinov.com/?p=585

[24] M. Kumar and L. Indu, “Detection and Prevention of SQL Injection attack,” International

Journal of Computer Science and Information Technologies (IJCSIT), , Vol. 5 (1) pages

374–377

[25] D. Venturin, Prevention of brute force attacks in LDAP, January 2013 –

http://blog.squadrainformatica.com/blog/2013/01/ldap-how-to-prevent-brute force-attacks

88

[26] Oracle Document, Interface PreparedStatement,

http://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html

[27] SQL Injection example, http://security.stackexchange.com/questions/34655/is-there-any-

sql-injection-for-this-php-login-example

[28] IBM Knowledge Center, Injection Attacks,

http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/index.jsp?topic=%2Fcom.ibm.ips.doc%

2Fconcepts%2Fwap_injection_attacks.htm

[29] Introduction to Lightweight Directory Access Protocol (LDAP), Article ID: 196455,

http://support.microsoft.com/kb/196455

[30] An introduction to LDAP, Accessed from

http://ldapman.org/articles/intro_to_ldap.html#security

[31] LDAP Connect User's Guide, Novell documentation, Accessed from

http://www.novell.com/documentation/extend5/Docs/help/Composer/books/LDAPWelcom

e.html

[32] B.K. Aichernig, P.A. Pari Salas, “Test Case Generation by OCL Mutation and Constraint

Solving,” Proeedings of IEEE 5th International Conference on Quality Software (QSIC),

2005

[33] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing Web Vulnerability

Scanning Tools for SQL Injection and XSS Attacks,” Proceedings of the 13
th

 Pacific Rim

International Symposium on Dependable Computing, Australia, December 2007, pages

365–372

[34] G. Vigna, W. Robertson, D. Balzarotti, “Testing Network-based Intrusion Detection

Signature Using Mutant Exploits,” Proceedings of the ACM Conference on Computer and

Communication Security (CCS), Washington DC, USA, October 2004, pages 21–30

[35] O. Tal, S. Knight, and T. Dean, “Syntax-based Vulnerabilities Testing of Frame-based

Network Protocols,” Proceedings of the 2nd Annual Conference on Privacy, Security and

Trust, Fredericton, October 2004, pages 155–160

[36] A. Kieżun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation of SQL injection and

cross-site scripting attacks, ” MIT Computer Science and Artificial Intelligence Laboratory

technical report, MIT-CSAIL-TR-2008-054, Cambridge, MA, USA, September 2008

[37] S. Ghosh and J. Kelly, “Byte code fault injection for Java Software,” Journal of System and

Software, Vol. 81, Issue 11, November 2008, pages 2034–2043

89

[38] P. Fouque, D. Leresteux, and F. Valette, “Using Faults for Buffer Overflow Effects,”

Proeedings of ACM Symposium of Applied Computing (SAC), Riva Del Grada, Italy, March

2012, pages 1638–1639

[39] J. Voas, “Assessing Survivality using Software Fault Injection System,” Technical Report

(ADP 010875) from Defense Technical Information Center, 2000

[40] R. A. Oliveira, N. Laranjeiro, M. Vieira, “Characterizing the Performance of Web Service

Frameworks under Security Attacks,” Proceedings of the ACM/SIGAPP Symposium On

Applied Computing (SAC), Salamanca, Spain, April 2015, pages 1711–1718

[41] P. Salas, Krishnan, K.J Ross, “Model-Based Security Vulnerability Testing,” Proceedings

of Australian Software Engineering Conference, Australia, 2007, pages 284–296

[42] D. Grela, K. Sapiecha, J Strug, “A Fault Injection Based Approach to Assessment of

Quality of Test Sets for BPEL proceeses,” Proceedings of the International Conference on

Evaluation of Novel Approaches of Software Engineering (ENASE), France, July 2015,

pages 81–93

[43] J. Cabot and M. Gogolla, “Object Constraint Language (OCL): a Definitive Guide,”

Formal Methods for Model-Driven Engineering, Volume 7320. Lecture Notes in Computer

Science, 2012, pages 58–90

[44] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready

for MDA. Addison-Wesley, 2003

[45] M. Stock, “Automatic Generation of Junit Test-Harnesses, MSc Thesis,” ETH Zurich,

March 2007, Accessed from http://ms.stradax.net/Publications/junit-testgen/junit-

testgen.pdf

[46] Self Service Password web application, Accessed from http://tools.ltb-

project.org/issues/391

[47] Self Service Password Unspecified LDAP Query Injection, Accessed from

http://osvdb.org/show/osvdb/86564

[48] Web interface phpLDAPadmin to manage LDAP directory, Accessed from

http://sourceforge.net/projects/phpldapadmin/

[49] S. Nica, "On the Improvement of the Mutation Score Using Distinguishing Test Cases,"

Proceedings of the 4
th

 IEEE International Conference on Software Testing, Verification

and Validation (ICST), 2011, pages 423–426

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Fall 12-7-2015

	Detection of Lightweight Directory Access Protocol Query Injection Attacks in Web Applications
	Pranahita Bulusu
	Recommended Citation

	Front Matter Template

