Title

Mapping Parallel Application Communication Topology to Rhombic Overlapping-Cluster Multiprocessors

Department

Computer Science

Document Type

Article

Publication Date

1-2000

Abstract

This paper extends research into rhombic overlapping-connectivity interconnection networks into the area of parallel applications. As a foundation for a shared-memory non-uniform access bus-based multiprocessor, these interconnection networks create overlapping groups of processors, buses, and memories, forming a clustered computer architecture where the clusters overlap. This overlapping-membership characteristic is shown to be useful for matching parallel application communication topology to the architecture''s bandwidth characteristics. Many parallel applications can be mapped to the architecture topology so that most or all communication is localized within an overlapping cluster, at the low latency of processor direct to cache (or memory) over a bus. The latency of communication between parallel threads does not degrade parallel performance or limit the graininess of applications. Parallel applications can execute with good speedup and scaling on a proposed architecture which is designed to obtain maximum advantage from the overlapping-cluster characteristic, and also allows dynamic workload migration without moving the instructions or data. Scalability limitations of bus-based shared-memory multiprocessors are overcome by judicious workload allocation schemes, that take advantage of the overlapping-cluster memberships. Bus-based rhombic shared-memory multiprocessors are examined in terms of parallel speedup models to explain their advantages and justify their use as a foundation for the proposed computer architecture. Interconnection bandwidth is maximized with bi-directional circular and segmented overlapping buses. Strategies for mapping parallel application communication topologies to rhombic architectures are developed. Analytical models of enhanced rhombic multiprocessor performance are developed with a unique bandwidth modeling technique, and are compared with the results of simulation.