Title

Molecular Dynamics Simulations of the Endocannabinoid N-Arachidonoylethanolamine (Anandamide) in a Phospholipid Bilayer: Probing Structure and Dynamics

Document Type

Article

Publication Date

7-1-2005

Abstract

The phospholipid bilayer plays a central role in the lifecycle of the endogenous cannabinoid N-arachidonoylethanolamine (anandamide, 1). Compound 1 has been shown to be synthesized from lipids, to interact with the membrane-embedded cannabinoid CB1 receptor, to be transported to intracellular compartments, possibly via caveolae-related endocytosis, and finally, to be degraded by fatty acid amide hydrolase (FAAH), an integral membrane protein which has an active site that is accessed by 1 possibly via the bilayer. Because the anandamide system is intimately associated with the lipid milieu, information concerning the location of 1 in the phospholipid bilayer and the conformations it can adopt is important to our understanding of the mechanism of cannabinoid action at the molecular level. We report here an exploration of the properties of 1 in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid bilayer via multi-nanosecond molecular dynamics simulations. Our results suggest that the polar headgroup of 1 resides at the lipid−water interface, specifically in the polar phospholipid headgroup region, whereas the nonpolar acyl chain of 1 extends into the hydrocarbon core of the membrane. Our analysis also indicates that (i) an elongated conformation of 1 is preferred in the DOPC bilayer environment; however, many other conformations of 1 are observed; (ii) hydrogen-bonding between the lipid (DOPC) and the headgroup of 1, although extensive, is quite short-lived; and (iii) the C−H bond order parameters for the acyl chain of 1 are low compared to order parameters typically seen for saturated acyl chains of fatty acids, and these order parameters decrease toward the bilayer center. The bilayer location for 1 revealed by these studies may be important for the interaction of 1 with membrane-embedded proteins such as the cannabinoid CB1 receptor and membrane-associated proteins such as FAAH.