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Abstract 

Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy 

characterized by large intra-genomic syntenic blocks. Three such whole genome duplication 

(WGD) events, designated as rho (ρ), sigma (σ), and tau (τ), have been identified in the 

genomes of cereal grasses.  Precise dating of these WGD events is necessary to investigate 

how they have influenced diversification rates, evolutionary innovations, and genomic 

characteristics such as the GC profile of protein coding sequences. The timing of these events 

has remained uncertain due to the paucity of monocot genome sequence data outside the grass 

family (Poaceae).  Phylogenomic analysis of protein coding genes from sequenced genomes 

and transcriptome assemblies from 35 species, including representatives of all families within 

the Poales, has resolved the timing of rho and sigma relative to speciation events and placed 

tau prior to divergence of Asparagales and the commelinids but after divergence with eudicots. 

Examination of gene family phylogenies indicates that rho occurred just prior to the 

diversification of Poaceae and sigma occurred before early diversification of Poales lineages but 

after the Poales-commelinid split.  Additional lineage specific WGD events were identified on the 

basis of the transcriptome data. Gene families exhibiting high GC content are underrepresented 

among those with duplicate genes that persisted following these genome 

duplications.  However, genome duplications had little overall influence on lineage-specific 

changes in the GC content of coding genes.  Improved resolution of the timing of WGD events 

in monocot history provides evidence for the influence of polyploidization on functional evolution 

and species diversification. 

 

Key words: whole genome duplication; grasses; monocots; GC content 

 

Introduction 

 Paleopolyploidy or ancient whole genome duplication (WGD) events have occurred 

across the eukaryotic tree of life and have been hypothesized to have had major impacts on life 

history innovations and organismal diversification (Levin 1983; Taylor & Raes 2004; Soltis et al. 

2009; De Smet & Van de Peer 2012).  WGDs have been especially widespread throughout 

flowering plant history (Cui et al. 2006; Vanneste et al. 2014), and ancient polyploidy has been 

associated with the origin of seed plants (spermatophyta) and angiosperms (Jiao et al. 2011).  

In fact, multiple rounds of WGD have been inferred for many plant lineages ( Tang et al. 2010; 

 at K
ennesaw

 State U
niversity on June 29, 2016

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/


	

3	
	

Jiao et al. 2011, 2012; McKain et al. 2012; Yang et al. 2015) including those leading to the 

model plant species Arabidopsis thaliana (Blanc & Wolfe 2004), the tree species Populus 

trichocarpa (Tuskan et al. 2006), legumes (Fabaceae; (Cannon et al. 2015)), and grasses 

(Poaceae; (Paterson et al. 2004; Tang et al. 2010)).   Though many recent polyploid lineages 

have relatively lower net diversification rates than diploid lineages, genome duplications have 

undoubtedly contributed to molecular, ecological, and phylogenetic diversification during 

angiosperm evolution (Mayrose et al. 2011; Soltis et al. 2014).  However, a mechanistic 

understanding of how polyploidy has contributed to evolutionary innovations and diversification 

in angiosperm history requires precise phylogenetic placement of the nature and timing of these 

ancient WGDs (Soltis et al. 2009).    

 Polyploid can occur through either somatic genome doubling within meristematic tissue, 

zygotes, or young embryos, or with the fusion of unreduced gametes (Ramsey & Schemske, 

1998). Both autopolyploidy (multiple copies of the same genome) and allopolyploidy (multiple 

copies of different genomes, usually of different species) have prevalence in angiosperm history 

(Barker et al. 2015). The formation of stable, sexually reproducing polyploid populations is 

thought to involve two steps: 1) mating between individuals with reduced and unreduced 

gametes, sometimes producing individuals with odd polyploidy levels, the so-called triploid 

bridge (Mallet 2007), and 2) subsequent fusion of unreduced gametes producing a stable 

tetraploid, or higher even-level polyploid, such as hexaploid wheat (Levin 2002).  Morphological, 

physiological, and ecological diversification among polyploid populations can follow as a 

consequence of differential gene loss or subfunctionalization and neofunctionalization of 

retained duplicates (i.e. homeologs). 

Polyploidy is hypothesized to have played a major role in the evolution of key 

innovations through the proliferation of novel genes and gene interactions (Ohno 1970; Levin 

1983; Van de Peer et al. 2009).  Polyploidy was recently shown to be a driver of innovation and 

novelty in secondary metabolites in the mustard family (Edger et al. 2015), demonstrating a 

connection between genome duplication, adaptation, and diversification.  Additionally, 

polyploidy has been implicated as spurring epigenetic changes (Yoo et al. 2014), immediate and 

sustained variation in gene expression (Yoo et al. 2013), and reorganization of gene networks 

(De Smet & Van de Peer 2012).  The process of duplicate gene loss (fractionation) can exhibit 

biases towards some functional classes (Maere et al. 2005; Freeling 2009; Doyle et al. 2008; 
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Tang et al. 2012), and potentially contribute to phenotypic variation due to differential duplicate 

retention. In some grass family clades (such as the tribe Andropogoneae), polyploidy has been 

shown to be a recurring evolutionary process with multiple independent polyploid events 

occurring over a relatively short period of time (Estep et al. 2014).   

 Early analyses of the rice genome revealed a WGD event designated as rho (Paterson 

et al. 2004; Yu et al. 2005) inferred to have predated the divergence of the BOP and PACMAD 

clades within the grass phylogeny (Grass Phylogeny Working Group 2001; Blanc and Wolfe 

2004; Paterson et al. 2004; Schlueter et al. 2004; Yu et al. 2005; Wu et al. 2008; Grass 

Phylogeny Working Group II 2012; Soreng et al. 2015). The rho event has been implicated as 

contributing to the success of Poaceae through the role of duplicated MADS-box genes in the 

development of the spikelet (Preston & Kellogg 2006; Preston et al. 2009) and the role of 

duplicated genes involved in the development of starch-rich seeds (Wu et al. 2008; Comparot-

Moss & Denyer 2009). Despite the rho event’s impact on functional and phylogenetic 

diversification of the grasses, the absence of genomic-scale analyses for early diverging grass 

lineages (pre-divergence of BOP and PACMAD clades) and non-grass graminids has left the 

precise placement of rho uncertain (Paterson et al. 2004; Soltis et al. 2009). 

 Later comparative genomic analyses performed with refined computational tools 

elucidated an even older genome duplication in grass genomes designated as sigma that was 

estimated to have occurred sometime prior to the diversification of Poaceae (Paterson et al. 

2009; Tang et al. 2010).  Analyses of the Musa genome identified three lineage-specific WGDs 

within Zingiberales and determined that the rho and sigma events occurred within the Poales 

lineage but prior to the divergence of the PACMAD and BOP clades (D’Hont et al. 2012).   

 Based on synteny analysis of the rice and sorghum genomes, Tang et al. (2010) 

hypothesized a third paleopolyploid event prior to sigma but such an event was not inferred in 

the Musa genome analyses (D’Hont et al. 2012).  Comparative synteny analyses of oil palm 

(Elaeis guineensis) and eudicot genomes have recently placed this event, designated tau, as 

early in the evolutionary history of monocots (Jiao et al. 2014), but after the divergence of the 

Alismatales (Ming et al. 2015).  Clearly, polyploidy has contributed to molecular variation and 

evolution within grass and other monocot lineages, but a full understanding of the impact of the 

rho, sigma and tau events requires more precise estimation of the timing of these genome 

duplications relative to branching points in the monocot phylogeny.  
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 Among the genome-wide molecular changes that may have been influenced by 

polyploidy, the GC profile of protein coding genes has been hypothesized to have influenced the 

synonymous substitution rate of retained duplicates (Wang et al. 2005).  A bimodal distribution 

of GC composition among coding genes, and 5' to 3' gradients in GC content of coding genes 

have long been identified as divergent characteristics of grass genomes relative to eudicot 

genomes (Carels et al. 1998). There have been conflicting reports on whether these are 

features of an ancestral monocot genome (Clément et al. 2015) or have been independently 

derived in the grasses (Carels & Bernardi 2000; Kuhl et al. 2004, 2005) and other plant lineages 

(Escobar et al. 2011; Serres-Giardi et al. 2012).  The functional implications of variation in GC 

content among monocot lineages have been discussed in light of associations between whole 

genome GC content, genome size and architecture, and environmental conditions (Smarda et 

al. 2014). However, the relative importance of mutational processes, including GC-biased gene 

conversion (Eyre-Walker & Hurst 2001; Duret & Galtier 2009), and selective processes is 

controversial (Shi et al. 2006; Tatarinova et al. 2010; Serres-Giardi et al. 2012; Tatarinova et al. 

2013; Glémin et al. 2014; Clément et al. 2015).  The debate has been fueled by the observed 

negative correlations between GC-content and gene length, exon number (Carels & Bernardi 

2000; Wang et al. 2004; Shi et al. 2006; Tatarinova et al. 2010), and gene body methylation, 

together with positive correlations with recombination rates and variance in gene expression 

(Tatarinova et al. 2010; Serres-Giardi et al. 2012).  Here we ask whether ancient polyploidy may 

have contributed to the evolution of variation in GC composition among coding genes in 

monocot genomes. 

 Following the classic work of Bowers et al. (2003), we employ a phylogenomic approach 

to resolve the timing of rho and sigma relative to speciation events within the Poales and tau 

earlier in monocot history. Transcriptome data for species sampled within each family in Poales 

were generated and assembled transcripts included in gene trees to expand taxon sampling 

beyond species with available genome sequences. Species were chosen for our phylogenomic 

analyses to increase sampling density and uniformity across the Poales phylogeny. Broader 

taxon sampling is considered to increase the accuracy of phylogeny (Zwickl and Hillis 2002; 

Leebens-Mack et al. 2005). Gene trees were estimated for all gene families with paralog pairs 

mapping to syntenic blocks (i.e. syntelogs) within the rice and sorghum genomes, and the timing 

of duplication relative to speciation events was inferred through interrogation of the gene trees.  

The combination of synteny-based approach and the phylogenomic approach is the best 
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method to assay the origins of WGD duplicates. At the same time, putative single copy gene 

families were used to rigorously estimate phylogenetic relationships within the Poales and 

related monocot lineages, improving precision over previous reconstructions with plastid 

sequences.  Gene trees were reconciled with the inferred species phylogeny to estimate the 

timing of rho, sigma and tau and the influence of these events on the evolution of key 

innovations. Finally, variation in GC composition across the Poales was analyzed and tested to 

determine if such variation relates to the relative placement of these polyploid events.    

 

Materials and Methods 

Taxon sampling 

 Relationships within the order Poales have recently been investigated through analyses 

of gene sequences extracted from plastid genome sequences (Givnish et al. 2010), and we 

used phylogenies from that study to guide sampling of all major clades and families within the 

order.  RNAs were isolated from mixed vegetative and reproductive tissues for 25 species, and 

transcriptome assemblies were combined with available genome data sets to carry out the 

analyses described below.  Sample identities and data descriptions can be found in Table S1 

along with doi numbers for RNA Seq reads, assemblies, multiples sequence alignments and 

gene trees deposited in NCBI's SRA (PRJNA313089) database and DRYAD (XXXXX).   

RNA isolation and sequencing 

 RNA was isolated from fresh young leaf or apical meristematic tissue using the RNeasy 

Plant Mini Kit (Qiagen, Valencia, California, USA).  Samples were kept on liquid nitrogen prior to 

isolation.  RNA was eluted into a final volume of 100 µL of RNase-free water.  RNA total mass 

and quality were estimated using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, California, 

USA).  Samples were deemed acceptable if RIN scores were greater than 8.0. 

 The TruSeq RNA Sample Preparation Kit (Illumina, San Diego, California, USA) was 

used to construct paired-end libraries with an average fragment length of 300 base pairs (bp).  

Sample libraries were sequenced on a GAIIx Genome Analzyer (Illumina, San Diego, California, 

USA), at University of Missouri-Columbia's DNA Core Facility, and on a HiSeq 2000 (Illumina, 

San Diego, California, USA) at the BGI Americas sequencing facility in Davis, CA. 

 

Transcriptome assembly 
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 Illumina data generated in this study and downloaded from the NCBI Short Read Archive 

(SRA) were assembled in the same fashion.  FastQC v0.10.1 (Andrews 2010) was used to 

identify adapter contamination and Cutadapt v1.1 (Martin 2011) was used to clean 

contaminated sequences.  Two mismatches per 10 bp were allowed and a minimum overlap of 

at least 10 bp was required for contaminant identification and trimming.  Cleaned reads were 

further trimmed using a custom perl script (https://github.com/mrmckain/poales-polyploidy) that 

trimmed reads from the ends until there were three consecutive bases with a quality score of 20 

or more.  Finally, reads with a median quality score less than 22, more than three uncalled 

bases, or trimmed lengths less than 40 bp were removed. We retained the orphaned as well as 

paired reads  for downstream assembly and analyses. 

 Cleaned and filtered data sets were assembled using Trinity (Release 2012-06-08) 

(Grabherr et al. 2011) with default parameters.  Reads were aligned to the Trinity assembly 

using bowtie v0.12.8 (Langmead et al. 2009) through the alignReads.pl script available in the 

Trinity distribution.  Output from this script was then piped into the run_RSEM.pl script (also 

packaged with Trinity), which utilizes RSEM v1.2.0 (Li & Dewey 2011) to quantify transcript 

abundance.  Per kilobase of exon per million fragments mapped (FPKM) was estimated for 

each component (gene), and the percentage of mapped fragments corresponding to each 

isoform within a component was estimated using the summarize_RSEM_fpkm.pl script 

packaged within Trinity and an average fragment length setting of 300 bp.  Isoforms that had 

1% or less of all fragments mapped to a component were removed to create a data set that 

represented well-supported transcripts.  Roche 454 transcriptome reads for Elaeis guineensis 

(GenBank accession numbers: SRX059258-SRX059263) were assembled with MIRA 

(Chevreux et al. 2004) using default parameters.   

Transcriptome translation and gene family circumscription 

 Translation of the transcriptome assemblies was conducted using a series of custom 

perl scripts (https://github.com/mrmckain/RefSeq).  TBLASTX matches to a database of gene 

models from 22 genomes used in the gene family circumscription developed by the Amborella 

Genome Project (2013) were identified for each assembled transcript, and matches with an e-

value less than 1e-10 were used to guide translations with GeneWise  (part of the Wise2 v2.2.0 

package) (Birney et al. 2004).  The longest GeneWise translations for each transcript were 

used. In rare cases where internal stop codons were identified, they were spliced out of the 

transcript assemblies. BLASTP searches against the 22-genome amino acid database were 
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then performed with the inferred amino acid sequences in order to assign them into the 22-

genome orthogroups (i.e. gene families circumscribed by OrthoMCL (Li et al. 2003) as in the 

Amborella genome paper (Amborelle Genome Project 2013).   

 

Species tree estimation 

Species trees were estimated using concatenated and coalescence-based approaches. 

A set of 970 single/low copy gene families were identified in our orthogroups (Duarte et al. 

2010) and used as a starting set for identifying strictly defined single copy genes in our taxon 

set.  Peptide sequences within these orthogroups were aligned using MUSCLE v3.8.31 (Edgar 

2004), and CDSs were aligned onto the amino acid alignments using PAL2NAL v13 (Suyama et 

al. 2006).  Alignments were filtered using two criteria.  First, columns in alignments were 

removed if gaps were observed in more than 90% of sequences (rows in the alignment matrix).  

Second, transcript translations (rows) were removed if they covered less than 30% of the total 

alignment length for the gene family.  Maximum likelihood (ML) gene trees were estimated using 

RAxML v7.3.0 (Stamatakis 2006) with the GTR + Γ substitution model and 500 bootstrap 

replicates.  Gene trees were rooted to outgroup taxa (Amborella trichopoda and Vitis vinifera) 

found in each gene family.  Orthogroup trees were analyzed for gene copy count for each 

species using a modified version of the clone-reducer script from Estep et al. (2014) 

(https://github.com/mrmckain/clone_reducer) as used in Cannon et al. (2015).   

The primary goal of the species tree estimation was to identify relationships of major 

lineages (i.e. branches coming off of the backbone of the phylogeny) rather than more shallow 

relationships. Putative isoforms for a species were collapsed into a consensus sequence if they 

formed a species-specific clade in the gene tree with a BSV (bootstrap support value) of 50 or 

greater.  Collapsing close isoforms (possible splice variants, alleles or recent duplicates) 

allowed us to maximize the number of single copy orthogroups.  Further, for the species tree 

analysis we reduced certain lineages to a single species representative in order to avoid 

coalescence issues that were potentially lowering the total number of single copy orthogroups. 

This included reducing the genera with multiple samples (Cyperus, Typha, Juncus, and 

Mayaca) and the family Centrolepidaceae to either single species or combining them into a 

single sample. These groups were identified as the hotspots where coalescence of putative 

isoforms was occurring within the reduced lineage but not always within the species. We 
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repeated the clone reducer methodology after these simplification steps and identified 234 high 

occupancy orthogroups that maintained genes in single copy across all taxa.  

To estimate the concatenation-based species tree, each aligned gene family was 

concatenated for a species.  If the species did not have a representative in the gene family, the 

taxon was represented by Ns in the alignments for the missing gene. All 234 orthogroups were 

represented in the concatenated analysis.  The topology was reconstructed using RAxML with 

the GTP + Γ model over 500 bootstrap replicates and rooted relative to Amborella trichopoda.   

The coalescence-based analysis was conducted using ASTRAL v.4.7.6 (Mirarab et al. 

2014). Trees that were used in the ASTRAL analysis were generated in RAxML as above.  The 

bootstrapping option of ASTRAL was used for 100 replicates. 

A consensus topology was created to represent the shared relationships of both 

methodologies.  Nodes were collapsed where the topology disagreed.  This did not affect the 

estimation of the timing of WGD events. 

Ks frequency plot estimation and estimation of Ks-derived putative paralogs 

  Ks frequency plots were estimated using the FASTKs pipeline 

(https://github.com/mrmckain/FASTKs). Translated transcriptome data sets were blasted 

against themselves using an e-value cutoff of 1e-40. Putative pairs were filtered if they: 1) 

exhibited 100% identity in their alignment, 2) had less than 300 base pairs of an alignment 

length, and 3) had less than 40% identity. Amino acid sequences for putative paralog pairs were 

then aligned using MUSCLE, and back translated to CDS using PAL2NAL. Ks, Ka, and Ka/Ks 

were estimated for the aligned pairs using codeml in PAML v.4.8 (Yang 2007) using the same 

parameters used by McKain et al. (2012). Normal mixture models were estimated for Ks values 

using the mclust v.5.0.2 (Fraley & Raftery 2002; Fraley et al. 2012) as implement in R. Ks plots 

were used as a secondary confirmation of rho and sigma placement in the species tree 

(Supplemental Figure 3). 

Estimation of syntelogs and gene tree estimation for multicopy gene families 

 Synteny blocks and retained duplicate genes derived from the rho, sigma and tau WGDs 

(i.e. syntelogs), were identified in the Oryza sativa and Sorghum bicolor genomes as described 

by Tang et al. (2010).  The rho synteny blocks were identified using a chaining distance of 40 

genes.  Following this step, we reconstructed the “pre-rho” putative ancestral regions (PARs; 

Tang et al., 2010) by interleaving the genes between the rho duplicate pairs. A second synteny 
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search was then performed on the pre-rho PARs to identify the sigma + tau synteny blocks 

using a relaxed chaining distance of 60 genes.   

 Jiao et al. (2014) inferred tau synteny blocks through comparisons of PARs estimated for 

oil palm (Elaeis guineensis) and the eudicot, sacred lotus (Nelumbo nucifera).  Each of these 

genomes was known to have included at least one round of paleopolyploidy since divergence 

and Jiao et al. (2014) estimated PARs for these two genomes using the methods described 

above.  Tau synteny blocks were identified as pairs of oil palm PARs lining up with a single 

sacred lotus PAR.  Syntelog sets identified in the oil palm tau synteny blocks were then 

compared with rice and sorghum genes to infer a total of 2,248 duplicate gene pairs in the 

sorghum and rice genomes derived from the tau WGD (Jiao et al. 2014).  We performed 

phylogenomic analyses on orthogroups with theses tau duplicates and compared them with the 

sigma + tau syntelogs we inferred in analyses of the rice and sorghum pre-rho PARs (see 

above).  

In some instances, syntelog pairs were sorted to different gene families as circumscribed 

by OrthoMCL (Li et al. 2003, Amborella Genome Project 2013).  Since we were interested in 

identifying the last common ancestral (LCA) node in gene trees for each syntelog set, these 

orthogroups were combined for alignment and phylogenetic analysis.  Gene family alignment 

and subsequent tree estimation were conducted as described above for species tree estimation. 

If a gene tree did not contain a non-monocot outgroup (Amborella or Vitis) homolog, it was 

dropped from further analysis. 

 Queries of the resulting gene tree analyses were conducted using PUG 

(https://github.com/mrmckain/PUG) with the consensus species tree as the guide tree. PUG 

uses an algorithm that queries putative paralogs in a gene tree identifying species congruence 

relative to the species tree.  Taxa that were removed prior to species tree estimation were 

inserted back into the tree for estimation of WGD placement.  The timing of duplication events 

relative to the speciation events shown in the consensus species tree (Figure 1) was estimated 

by querying the rooted gene trees for the species represented in clades defined by an LCA 

node for each syntelog set.  Syntelog sets with poorly supported LCA nodes demonstrating 

BSVs less than 50 were not used to infer the timing of WGDs.  For the remaining syntelog sets, 

placement of duplication events was based on the species composition within the clade defined 

by the LCA node in the gene trees and the species composition within its sister lineage.  This 

second criterion for placing duplication events was implemented to minimize the impact of 
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incomplete gene sampling in the transcriptome assemblies. For an LCA node placement to be 

accepted, the following criteria had to be met: 1) a minimum of 2 taxa had to be present above 

the duplication node (i.e. at least one more taxon in addition to rice or sorghum syntelog pairs), 

2) no taxa found above the hypothesized WGD position in the species tree could be found in the 

lineage sister to the putative LCA defined clade in the gene tree, and 3) the lineage sister to the 

LCA defined clade had to contain at least one taxon from the sister lineage to the hypothesized 

WGD node in the species tree. Gene tree topologies were also inspected manually to verify the 

results of the automated analysis. Counts of LCAs (Last Common Ancestor for hypothesized 

WGD clade) with well supported placement were made for each node in the species tree and 

split into two categories based on the BSV of the LCA: 1) 50 ≤ BSV < 80 and 2) BSV ≥ 80.    

 For each orthogroup, all possible pair combinations of transcripts/annotated genes for 

each species, except Amborella and Vitis, were estimated. These pairs were used in a separate 

analysis with PUG to identify putative WGD events by accumulated signal at all nodes.  

GC Content Analysis 

 GC content was analyzed for all orthogroups with identified putative paralogs pairs and 

for other orthogroups with at least 10 taxa present. A total of 13,798 orthogroups were queried. 

The PAL2NAL alignments were used for GC estimation. For each orthogroup, sequences were 

removed if they were not within one standard deviation of the average length of the orthogroup 

alignment in order to better assess 5' to 3' gradients in GC content along complete or nearly 

complete transcript assemblies. 

 Total GC percentage was calculated for each transcript along with 5’ to 3’ gradients in 

GC composition. For each orthogroup, the alignment length was estimated as number of 

codons and GC composition were estimated for non-overlapping windows corresponding to 1% 

of the alignment.  For each species, the GC content of each non-overlapping 1% interval was 

calculated as the total GC percentage for that window across all orthogroups.   

 Mean and standard deviation of GC composition (both total and GC3) were estimated for 

each taxon. A student’s t-test was used to determine if the mean total GC percentage was 

different from the mean GC3 in each taxon. Hartigan’s dip test for unimodality, as implemented 

in diptest v.0.75-7 in R, was used to test if the distribution of total GC content and GC3 for 

genes across all taxa exhibited unimodality. For taxa where the unimodality null hypothesis was 

rejected, an inspection of the distribution of %GC across all orthogroups suggested the data 

were bimodal. A kmeans clustering analysis of these seven taxa using two clusters identified 
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cluster centers at 46.7% and 63.7% GC for total GC and 45.8% and 82.5% for GC3. Bimodal 

distributions were particularly evident for GC3, with 18 taxa exhibiting bimodality with kmeans 

centers at 45.7% and 60.6% GC for total GC and 44.4% and 76.1% for GC3.  

For each of the seven taxa found to have a bimodal distribution for total GC composition, 

kmeans clusters (n=2) were calculated. Clustered transcripts were used to identify abundance 

of low GC and high GC transcripts in orthogroups. Orthogroups were then classified into three 

categories: 1) High GC—75% or more of transcripts for a given taxon in an orthogroup are 

clustered as high GC, 2) Low GC—75% or more of transcripts for a given taxon in an 

orthogroups are clustered as low GC, and 3) Mixed GC—remaining orthogroups that do not fall 

into other classes. Results from each taxon were compared and sets of true high GC and true 

low GC were identified across all bimodally distributed taxa. GC composition distributions for all 

transcripts in both high and low GC classes were compared. We then tested for significant 

differences in high vs. low GC classification distributions for each taxon and all taxa using t-

tests.  A contingency test was used to test for significant associations between orthogroup GC 

content classifications and the retention of tau, sigma, or rho duplicates across orthogroups. 

 

Results 

Transcriptome assemblies, translations, and gene family sorting 

 In total, over 1.04 million transcripts from 35 species (an average of 36,758 transcripts 

per taxon) were assembled after adaptor trimming and quality filtering.  Transcript assemblies 

with an average length of 1005 bp (Table S2) were translated, and sorted into gene families as 

circumscribed through OrthoMCL clustering of gene models from 22 sequenced and annotated 

plant genomes including rice and sorghum (Li et al. 2003; Wall et al. 2008; Amborella Genome 

Project 2013). Resulting orthogroups (i.e. OrthoMCL clusters) including sequences from up to 

all 35 species included in the study (Table S1) were used for species tree estimation and 

resolution of timing of ancient WGDs.  

Single copy gene family phylogeny analysis 

 Multiple sequence alignments for all 234 orthogroups found to have no more than one 

gene copy in any of the sampled genome or filtered transcriptomes were concatenated and a 

Maximum Likelihood (ML) tree was estimated from the resulting super-matrix (Materials and 

Methods; Figure S1).  A coalescence-based species tree estimate was generated from the 234 

orthogroup trees using ASTRAL (Mirarab et al. 2014) (Figure S2).  Minimal discordance was 
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found between the super-matrix and ASTRAL trees, and all relationships with bootstrap values 

(BSV) greater than 90% were considered reliable and recovered in both analyses (Figs. S1-S2).  

These robustly estimated relationships (Figure 1) are largely consistent with previous ML super-

matrix analyses of 81 plastid genes (Givnish et al. 2010; Barrett et al. 2015) with a few 

exceptions.  The basal lineage of Poales differs between the nuclear and plastid phylogenies. 

Whereas the plastome analyses placed Bromeliaceae sister to the rest of Poales, our nuclear 

gene analyses recovered strong support for Typhaceae as sister to the rest of Poales in both 

the concatenated and coalescence-based analysis.  Further, Givnish et al. (2010) found strong 

support for an Eriocaulaceae + Mayacaceae clade and Xyridaceae separate, whereas our 

analyses suggest Lachnocaulon (Eriocaulaceae) and Xyris (Xyridacae) form in a clade that 

does not include Mayaca (Mayacaceae).  However, the support for a Xyridaceae+Eriocaulaceae 

clade is very low in the coalescence tree (BSV 44), suggesting rapid diversification at this point 

within the Poales phylogeny.  Finally, we place Joinvillea (Joinvilleaceae) and Ecdeiocolea 

(Ecdeiocoleaceae) in a clade, sister to the Poaceae (Figure 1) in contrast to the plastome-based 

resolution of Joinvilleaceae and Ecdeiocoleaceae as successive sister lineages in a grade 

leading to the Poaceae (Givnish et al. 2010; Barrett et al. 2015). The plastid genome is inherited 

as a single-locus, so differences between the trees inferred from multiple nuclear genes and 

plastid genome may be due to incomplete sorting of ancestral variation in the plastid genome 

haplotypes between speciation events (Maddison 1997). In any event, the discrepancies 

between our inferred species phylogeny and plastome-based phylogenetic inferences involve  

single rearrangements across short internodes on the backbone of our species tree estimate.  

Therefore, discordance among gene histories due to incomplete lineage sorting is expected. We 

used the well-supported relationships found to be concordant in our nuclear gene super-matrix 

and coalescence-based analyses (Figure 1) to guide gene tree queries and estimate the timing 

of the rho, sigma, and tau WGD events, after the reinsertion of removed taxa (Typha 

angustifolia, Cyperus alternifolius, Aphelia sp.) and the splitting of combined genera (Mayaca—

Mayaca fluviatilis and Mayaca sp., Juncus—Juncus effusus and Juncus inflexus).     

Delineation of syntelog pairs from Sorghum and Oryza genomes   

 Following the methodology of Tang et al. (2010), syntenic regions were identified within 

the genomes of Sorghum bicolor (sorghum) and Oryza sativa (rice) using a hierarchical 

approach (see Materials and Methods).   A total of 56 syntenic block pairs identified in the rice 

genome were assigned to the rho event, and 39 rho block pairs were identified in the sorghum 
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genome. These blocks included 4296 rice syntelog pairs and 3971 sorghum syntelog pairs.  

Synteny analysis of the pre-rho blocks resulted in circumscription of 58 sigma+tau blocks in rice 

and 63 blocks in sorghum. These inferred syntenic blocks associated with sigma or tau include 

1782 and 1898 syntelog pairs in rice and sorghum genomes, respectively.  In addition, a total of 

2,248 duplicated rice and sorghum gene pairs were associated with the tau event by Jiao et al. 

(2014), to add to our exhaustive list of gene pairs for dating purpose.  All inferred rho, sigma and 

tau syntelog pairs were included in gene tree analyses in order to estimate the timing of 

duplication relative to speciation events. 

Querying of gene trees for placement of WGD events using paralogs from genomic data 

 Orthogroup membership was determined for all 8,267 putative rho and 3,680 sigma+tau 

syntelog pairs derived from our synteny analysis.  In 1,680 instances syntelog pairs were placed 

in separate orthogroups.  In these cases, the homologous orthogroups were combined before 

sequence alignment and tree estimation.  In total, alignments and ML trees were estimated for 

3020 OrthoMCL circumscribed gene families (Amborella Genome Project 2013) including one or 

more syntelog pairs, 2089 of which included at least one Vitis vinifera or Amborella trichopoda 

gene that could be used as outgroup sequences to root gene duplications that occurred at any 

point in monocot history. Collectively, these 2089 gene trees included a total of 6484 syntelog 

pairs mapping to 3203 unique ancestral nodes representing the last common ancestor (LCA) 

homeologous gene pairs.  

 The 3203 LCA nodes were filtered based on BSV and grouped into two sets, those with 

50 ≤ BSV < 80 and those with BSV ≥ 80 (designated as BSV 50 and BSV 80, respectively). 

Additionally, trees were queried in relationship to the estimated species tree, and only nodes in 

the gene tree congruent in topology to the species tree were accepted (See Materials and 

Methods).  After filtering based on support values, 836 unique LCA nodes for 1348 rho block 

syntelog pairs and 124 LCA nodes for 318 sigma+tau block pairs for were retained.   

 The estimated timing of duplication events relative to the speciation events depicted in 

Figure 1A were inferred by determining the collection of species represented in clades defined 

by the syntelog LCA nodes described above. This analysis strongly suggested that the rho 

WGD occurred on the branch leading to the last common ancestor of all extant grass species 

including the basal grass Streptochaeta.  Trees with rho syntelog pairs included 411 rho LCA 

nodes with BSV 80 defining clades with Streptochaeta genes but no genes from taxa outside of 

the Poaceae (Figure 1A).  Another 107 rho syntelog LCA nodes with BSV of 50 or better 
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showed this same pattern. In contrast, just 123 rho LCA nodes (BSV 80; 143 BSV 50) 

suggested that rho occurred after Streptochaeta diverged from the rest of the grasses but prior 

to the diversification of the BOP+PACMAD clades (Figure 1A). 

As expected, sigma+tau block LCA nodes mapped to two points on the species tree 

corresponding to the two separate WGD events.  Presumed sigma related duplication LCAs 

were concentrated (26 BSV 80; 11 BSV 50) on the branch leading to the last common ancestor 

of all extant species within the Poales, whereas the concentration of LCAs mapping to the 

Asparagales + commelinid clade (50 BSV 80; 14 BSV 50) is interpreted as representing tau 

(Figure 1A).   

 This timing of the tau WGD was also inferred by querying orthogroup trees including the 

homeologs identified by Jiao et al. (2014).  Of the 2,248 putative tau pairs from that study, we 

identified 546 pairs (416 BSV 80; 130 BSV 50) representing 56 unique LCAs. Of these 56 LCAs 

derived from the Jiao et al. study, 18 overlap with LCAs we identified in the sigma+tau synteny 

blocks, and all map to the lineage leading to the last common ancestor of Asparagales and the 

commelinids.  This finding is in agreement with results recently reported in the Phalaenopsis 

equestris (Cai et al. 2014) and pineapple genome (Ming et al. 2015) papers.  

 In summary, phylogenomic analyses of rho, sigma, and tau syntelog pairs improve 

precision in the placement of each of these WGD events inferred from analyses of Poaceae 

genomes and provide a “gold standard” secondary source of WGD estimation.  

Querying of gene trees for placement of WGD events using paralogs from transcriptomic 

data  

 In addition to using the paralogs generated from synteny analyses of rice and sorghum, 

putative paralogs were estimated from Ks analyses of all of the transcriptomes used in this study 

(Figure S3).  A total of 20,900 Ks-derived putative paralogs were queried against orthogroups 

identified as having rho or sigma synteny-derived putative paralogs. Many of the Ks-derived 

putative paralogs were estimated as isoforms by Trinity, and are more than likely true isoforms 

or alleles especially for the low Ks pairs. Of all putative paralog pairs, 667 (550 BSV 80; 117 

BSV 50) representing 343 unique duplicate LCAs (274 BSV 80; 69 BSV 50) were placed within 

the species tree after filtering. Concentrations of gene duplications placed at the base of the 

Restionaceae (unique LCAs: 102 BSV 80; 27 BSV 50), at the base of the restiids (unique LCAs: 

15 BSV 80; 2 BSV 50), at the base of Poaceae (unique LCAs: 78 BSV 80; 16 BSV 50), and 

after the divergence of Juncus from cyperids (unique LCAs: 29 BSV 80; 2 BSV 50) (Figure 1B, 
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Figure S3, Figure S4).  In sum, the Ks plots and phylogenomic analyses provide consistent 

evidence for three additional WGD events placed on lineages leading to the restiids (including 

Centrolepidaceae, and Restionaceae), the Restionaceae and Juncus (Figure S4).  As discussed 

by Cui et al. (2006) and others, Ks plots may not detect ancient genome duplications so these 

should be interpreted as a minimal set of polyploidy events among the investigated Poales 

lineages.   

 A total of 1,870,214 unique combinations of transcripts or annotated genes were 

identified across all monocot taxa in sampled orthogroups.  This number is inflated to what may 

be considered paralogs due to existence of isoforms and alleles in transcriptome data. Of these, 

36,567 (BSV 80; 51,727 BSV 50) pairs were identified to correspond to nodes in the species 

tree after filtering.  These pairs represent 5,455 unique LCAs (BSV 80; 7,107 BSV 50) spanning 

almost every node of the species tree. We used the lowest represented known event (sigma, 

235 unique LCAs represented in this analysis) to set a minimum threshold for identification of 

WGD events from the gene tree-derived pairs. This threshold allows for identification of a 

number of events known from either synteny analysis or other publications including: tau (410 

BSV 80), sigma (235 BSV 80), rho (610 BSV 80), Zingerberales gamma event (377 BSV 

80)(D’Hont et al. 2012), palm WGD event (345 BSV 80) (D’Hont et al. 2012), and Agavoideae 

WGD event (615 BSV 80) (McKain et al. 2012) (Figure 1C). In addition to these published 

events, we also have strong evidence for a Juncus event (423 BSV 80), a Cyperus event (463 

BSV 80), and a Restionaceae event (499 BSV 80) (Figure 1C). There are two other possible 

WGD events that fell short of the imposed threshold: a Centrolepidaceae event (200 BSV 80) 

and a restiid event (184 BSV 80). It is quite possible that our threshold value is simply too 

conservative and these are true WGD events.  Relaxing of the threshold even further would 

implicate possible events within the cyperids (162 BSV 80), within Bromeliaceae (128 BSV 80), 

and at the base of the PACMAD clade (121 BSV 80).  

Analysis of changes in GC content relative to WGDs.  

 Total GC content (Figure 2A) and GC composition at the 3rd codon position (GC3) 

calculated for each taxon were highly correlated (Table 1, Figure S5).  The highest average 

%GC found was in Brachypodium distachyon (56.3% GC, SD: 8.9%) and the lowest was in 

Juncus effusus (44.8% GC, SD: 6.0%) (Table 1).  Many of the GC composition distributions of 

Poales taxa appeared to be bimodal in nature (Figure 2A), but a stringent Hartigan’s dip test 

(HDT) rejected the unimodal null hypothesis for only seven species (p ≤ 0.05): Lachnocaulon 
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anceps, Aphelia sp., Oryza sativa, Brachypodium distachyon, Dendrocalamus latiflorus, Aristida 

stricta, and Sorghum bicolor (Table 1).  Even among these seven species, there is variation in 

total GC composition and the degree to which the GC-content distributions are bimodal (Figure 

2A).  When HDTs were conducted on GC3 data, 18 taxa exhibited a bimodal distribution 

including multiple cyperid taxa, which overall exhibit a much lower GC composition (Table 1, 

Figure 3B). Interestingly, unimodality in total GC and GC3 could not be rejected for 

Streptochaeta, suggesting a possible loss of this characteristic in that taxon (Figure 2A) or an 

independent trend towards bimodality in the BOP+PACMAD clade.  

 Kmeans clusters (n=2) estimated for the seven taxa identified as having bimodal total 

GC composition distributions show very similar values for the low and high GC cluster averages 

(Table 2).  A total of 13,027 out of 13,798 total orthogroups were found to be either “high GC” or 

“low GC” across these seven taxa. We identified 6,770 low GC orthogroups and 3,662 high GC 

orthogroups that were consistent across the seven bimodal taxa. The remaining 2,595 

orthogroups varied in GC composition assignments (“high GC” or “low GC”) among the seven 

taxa.  Interestingly, contingency tests indicated that orthogroups with high GC content were 

significantly underrepresented among those retaining syntenic rho, sigma and tau duplicates in 

the rice and sorghum genomes (p-values 0.027 - << 0.0001; Table 3).  

 GC distributions of all transcripts for high and low GC orthogroups were found to exhibit 

normal distributions (Shapiro test; p-value 0.00) that were found to be statistically different from 

each other (Figure 3A; t-test, p-value = 0.00). Since orthogroups were classified as high, low 

and mixed GC composition based on only the seven taxa with significant bimodal GC 

composition as indicated by the Hartigan’s dip test, we further tested if the variation in GC 

between the high and low classes was found across all taxa sampled.  For each taxon, the high 

and low GC distributions were found to be significantly distinct (t-test, p-value = 0.00; Figure 

3A). Intra-taxon variation between these classes varied immensely. For example, the difference 

in GC percentage between the two classes in Brachypodium distachyon (highest GC 

percentage measured) was much greater than difference estimated for Juncus effusus (lowest 

GC percentage measured) (Figure 3B-C). The distributions of the same GC classes between 

these two species were found to be statistically different (t-test, p-value = 0.00).  

 As has been described in previous work (Wong et al. 2002; Kuhl et al. 2004, 2005; 

Tatarinova et al. 2010; Clément et al. 2015) the bimodal GC content distribution observed in 

grasses and some other monocot genomes is associated with a 5' to 3' gradient in the GC-
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composition of coding sequences. The GC composition gradient is absent or very weak for taxa 

that were not identified as having multimodal GC3 distributions (Figure 2B). 

 

DISCUSSION 

 Understanding the effect of polyploidy on the evolution of angiosperms requires both 

investigation of recent polyploids and characterization of genome evolution following ancient 

WGDs.  Detection and phylogenetic mapping of paleopolyploidy events is a necessary first step 

in the characterization of genome evolution following ancient WGDs.  Methods for detecting 

WGD events include synteny analysis (Bowers et al. 2003; Tang et al. 2007; Paterson et al. 

2012), assessment of frequency distributions for synonymous substitutions (Ks) between 

duplicate genes (Lynch and Conery 2003; Blanc and Wolfe 2004; Cui et al. 2006; Vanneste et 

al. 2013), and phylogenomic analyses reconciling duplications in gene trees with known species 

relationships (Bowers et al. 2003; Jiao et al. 2011; Cannon et al. 2015; Yang et al. 2015). Each 

of these methods has its strengths and limitations (Bowers et al. 2003; Vanneste et al. 2013). 

Synteny may decay over time; substitutions at synonymous sites can become saturated, thus 

reducing the resolution of Ks; and gene tree estimation can be confounded by long-branch 

attraction artifacts and deep coalescence.  These methods can be applied in concert to provide 

multiple lines of evidence for hypothesized WGD events (Bowers et al. 2003; Paterson et al. 

2004, 2010; D’Hont et al. 2012; McKain et al. 2012; Amborella Genome Project 2013; Jiao et 

al., 2014; Cannon et al. 2015).  As first proposed by Bowers et al. (2003), the timing of WGDs 

identified through synteny analyses can be resolved through phylogenomic analyses including 

transcript sequences from taxa without reference genome sequences.  Such a phylogenomic 

approach is becoming more reliable as the increasing availability of transcriptome data from 

taxa well distributed across the tree of life can be used to ameliorate estimation artifacts caused 

by model misspecification and long-branch attraction (e.g. Leebens-Mack et al. 2005).  Further, 

as we show in this study, increasing the density of taxon sampling within an organismal 

phylogeny can yield improved precision in estimates of the timing of WGD events. 

Assessing the impact of WGD events in monocot history  

The evolution of GC-profiles in monocot genes 

 The bimodal distribution of GC composition among protein coding genes in cereal 

grasses (Poaceae) has been studied for nearly two decades (Carels et al. 1998), and Wong et 

al. (2002) hypothesized that gene and genome duplications may contribute to this pattern.  
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There has been much discussion about the processes responsible for bimodal GC composition 

distributions (Carels & Bernardi 2000; Wang et al. 2004; Shi et al. 2006; Tatarinova et al. 2010; 

Serres-Giardi et al. 2012; Tatarinova et al. 2013; Glémin et al. 2014; Clément et al. 2015), but 

experimental tests of mechanistic hypotheses remain intractable.  Inferences have been drawn 

mainly from correlations between GC-composition and gene length, exon number, gene 

expression level, synonymous substitution rates, gene body methylation, and local 

recombination rates (Carels & Bernardi 2000; Wang et al. 2004; Shi et al. 2006; Tatarinova et 

al. 2013, 2010; Muyle et al. 2011; Serres-Giardi et al. 2012; Clément et al. 2015; Glémin et al. 

2014).  Our findings support and extend these empirical findings in an evolutionary context.  

With respect to polyploidy, we find that genes and gene families exhibiting high GC content tend 

not to retain homeologs following whole genome duplication events.  Therefore, due to a bias 

toward low GC in retained genes, whole gene duplications may actually reduce frequency of 

high GC genes relative to low GC genes.  At the same time, some of the grass species exhibit 

the most bimodal GC content distribution, suggesting that within these lineages any reduction 

has been offset by some other process.  Our data suggest that this bimodality is driven by an 

increase in the average GC composition of a distinct group of gene families that are consistently 

classified as “high GC” across monocot lineages exhibiting bimodality in GC content distribution. 

These gene families appear to be ancestrally relatively high in GC content, even in species with 

low total GC composition (Figure 3B). 

  Greatly improved sampling within Poaceae and Poales reveals multiple reductions and 

increases in the biomodality of GC composition from what appears to be an ancestrally weak 

bimodal GC distribution (Figure 2A).  Within Poaceae, GC content distributions for Aristida, and 

Dendrocalamus exhibit a reduction of high GC content genes, and the basal grass lineage, 

Streptochaeta, has a unimodal GC content distribution (Figure 2A).  Sampled species within the 

cyperid clade (including Cyperaceae and Juncaceae) exhibit weak bimodal or unimodal GC 

content distribution (Figure 2A, Table 1). In agreement with recently published work on strict 

ortholog sets (Clement et al.  2015), our analyses of homologs within gene families indicate that 

high GC composition is not randomly distributed across coding genes, but rather it is a 

presumably an inherited feature of specific gene families.  As Clement et al. (2015) inferred for 

banana, palms and yam, the declines in GC content in the lineages described above were due 

to reduction of GC composition in ancestrally high GC gene families.  These observations 

should motivate more focused comparisons of the high GC gene families we have identified in 
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monocot lineages with contrasting GC composition frequencies.  Given observed associations 

between high GC content and higher recombination rates, lower synonymous substitution rates, 

and absence of gene body methylation in species that do exhibit bimodal GC content 

distributions, analysis of these features in Aristida, Dendrocalamus (and perhaps all bamboos), 

Streptochaeta, and the cyperids could be informative and provide insight into processes 

governing increases and decreases in GC composition of these specific gene families. 

The evolution of biosynthetic and developmental gene networks 

  A primary objective of this study was to determine whether rho occurred prior to the 

diversification of Poaceae or within the family prior to the diversification of the BOP+PACMAD 

clade (Soltis et al. 2009). An indicator of the impact of rho on the evolution of grasses would be 

the relationship between duplicated genes, their origin, and their involvement in novel 

phenotypes. The starch biosynthesis pathway in the endosperm of grasses is unique in that 

ADP-glucose, a major component of the pathway, is synthesized not only in the plastid like 

other angiosperms, but in the cytosol as well (Comparot-Moss & Denyer 2009). This alternative 

pathway dominates over the ancestral plastid pathway for ADP-glucose production (Beckles et 

al. 2001), suggesting that it is evolutionarily advantageous. The derived, cytosolic pathway is 

controlled by genes that were duplicated in concert in Brachypodium, Oryza, Setaria, Sorghum, 

and Zea, placing the origin prior to an ancient speciation event in the BOP+PACMAD clade (Wu 

et al. 2008; Li et al. 2012).  The starch biosynthesis pathway has not been characterized in 

basal Poaceae species (including Streptochaeta) or the other graminid families—

Ecdeiocoleaceae, Joinvilleaceae, and Flagellariaceae—but placement of the rho WGD in the 

last common ancestor of all extant Poaceae lineages leads to the prediction that basal lineages 

in the family (e.g. Streptochaeta) potentially harbor the genes necessary for cytosolic production 

of ADP-glucose (Wu et al. 2008), while members of the other graminid families would not.  

 Placement of the rho WGD also elucidates the molecular basis for the evolution of 

morphological characters. The spikelet serves as a key characteristic of the grasses, though the 

evolution of the structure has long been a subject of research due to the similarity to closely 

related graminids (Rudall & Stuppy 2005; Sajo & Rudall 2012) and difficulty in determining 

homology in inflorescence structure between early diverging Poaceae species and the core 

Poaceae (Sajo et al. 2008; Preston et al. 2009; Sajo & Rudall 2012).  The influence of the rho 

WGD event on the development of the spikelet is suggested through analyses of the MADS-box 

transcription factor gene family AP1/FUL, which demonstrated that the FUL gene was 
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duplicated prior to the diversification of Poaceae (including Streptochaeta) but after the 

divergence of Joinvilleaceae (Preston & Kellogg 2006).  Interestingly, the paralogs were not 

maintained in duplicate in either Streptochaeta or Pharus, both of which are early diverging 

lineages with distinct inflorescence structures compared to core Poaceae (Preston & Kellogg 

2006).  These findings, in concordance with the placement of rho in the lineage leading to the 

Poaceae clade, lead us to hypothesize that the retention of duplicate genes led to the 

development of the spikelet in grasses, though more validation at the functional level looking at 

paralog retention and expression in the inflorescence across the Poaceae is required to 

elucidate this complex question. 

 Synteny analyses (Tang et al. 2010) and a previous phylogenomic analyses including 

palm and banana genes (D’Hont et al. 2012) suggested that sigma occurred sometime prior to 

the diversification of Poaceae but after the divergence of Poales from the other commelinid 

orders.  Divergence time analyses suggested that this event occurred  ~130 million years ago 

(Tang et al. 2010), which would be prior to the diversification of the Poales crown group over 

110 million years ago (Magallón & Castillo 2009; Magallón et al. 2015) and the divergence of 

the Poales lineage from other commelinid orders (~110 million years ago; Magallón et al. 2015).  

 The impact of the sigma event on the evolution of Poales may be seen in the diversity of 

the group.  The order contains approximately 21,000 species, representative of ~33% of all 

monocot species, and is ecological dominant in a number of habitats (Linder & Rudall 2005; 

Givnish et al. 2010).   Of the ~21,000 Poales species, three Poales families—Poaceae 

(~11,300), Cyperaceae (~5,700), and Bromeliaceae (~3,100)—contribute ~20,000 species 

(Givnish et al. 2010).  Though the number of species in Poaceae may be partly attributable to 

the rho event due to diversification in the BOP+PACMAD clade, the other diversifications could 

be linked to innovations spurred by gene duplications from the sigma event, such as the 

evolution of the epiphytic habit in Bromeliaceae (Givnish et al. 2011).  Investigation into the 

evolutionary effects of the sigma event will require further identification of duplicated genes and 

gene networks derived from the event and deep genomic sampling across Poales.   

 Though this study was primarily aimed at the phylogenomics of Poales and the 

placement of the rho and sigma WGD events, we were able to detect the tau WGD event 

characterized by Jiao et al. (2014) and verify its placement prior to the divergence of 

Asparagales and the commelinid lineage. Analyses within the pineapple genome paper, are 

consistent with ours in placing the tau WGD before divergence of the commelinid and 
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Asparagales lineages and suggest that it occurred after the divergence of Alismatales from 

other monocot lineages (Ming et al. 2015).   This earlier WGD in monocot history was previously 

hypothesized by Tang et al. (2010) and supported in our gene tree analyses by 407 unique 

gene families.  A similarly timed duplication of MADS-box genes has been reported to be shared 

by the Commelinales and Poales, though sampling and support was not high enough to further 

estimate when exactly the duplication occurred (Litt & Irish 2003). Further sampling of the 

monocots is needed to more precisely place tau relative to the rapid diversification of monocot 

lineages early in the history of the group (e.g. Givnish et al. 2010, Magallón et al. 2015) and to 

understand possible implications of this event on the history of monocots.   

 Phylogenomic analyses are becoming much more common as high-throughput 

sequencing becomes the standard.  These types of analyses provide insight into the evolution 

of large portions of the genome of many taxa not previously sampled in genomic studies.  

Combining phylogenomic analyses with other methods for identifying WGD events, such as 

synteny analysis, allows for the unambiguous detection of paleopolyploid events and their 

phylogenetic placement with improved precision and confidence.  Understanding when these 

events occurred in the history of angiosperms will help elucidate the long-term evolutionary 

patterns associated with polyploidy and further the understanding of how this group of 

organisms has become so widespread and diverse.   
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Figure 1. Consensus species tree from concatenated and coalescence-based analysis of 234 
single copy orthogroups with results from gene tree querying of putative paralogs. A) Mapping 
results of synteny-derived paralogs from the rice and sorghum genomes displayed as total 
number of unique least common ancestor (LCA) nodes with bootstrap values ≥ 80. Results 
show placement of rho, sigma, and tau WGD events. B) Mapping results of Ks plot-derived 
paralogs with 22 (number for sigma event) or more total unique LCAs and boostrap values ≥ 80 
for Poales species only. C) Mapping results of gene tree-derived paralogs with 235 (number for 
sigma event) or more total unique LCAs and boostrap values ≥ 80 for monocot species only. 
Previously published WGD events are identified and placed on the tree, including a shared 
Zingiberaceae event (gamma), a palm event, and an Agavoideae event, represented as gold 
diamonds. If previously named, the Greek character representing the event is also displayed. 
Higher support for rho, sigma, and tau is identified relative to the synteny-derived paralogs and 
other potential WGD events in Juncus, Cyperus, and Restionaceae are also identified.  
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Species GC.Mean GC.SD GC3.Mean GC3.SD Hart.GC Hart.GC3 
T-Test. 

GCvGC3 
Mayaca sp. 0.505 0.063 0.551 0.132 0.712 0.163 0.000 
Amborella trichopoda 0.463 0.040 0.461 0.084 0.997 0.822 0.171 
Aphelia sp. 0.529 0.088 0.599 0.190 0.000 0.000 0.000 
Aristidastricta 0.508 0.095 0.547 0.201 0.003 0.000 0.000 
Brachypodium distachyon 0.563 0.089 0.665 0.185 0.000 0.000 0.000 
Brocchinia reducta 0.482 0.071 0.509 0.158 0.559 0.014 0.000 
Centrolepis monogyna 0.492 0.061 0.530 0.147 0.437 0.002 0.000 
Chondropetalum tectorum 0.480 0.061 0.494 0.129 0.529 0.034 0.000 
Cyperus alternifolius 0.459 0.049 0.455 0.096 0.918 0.087 0.000 
Cyperus papyrus 0.458 0.048 0.450 0.092 0.949 0.008 0.000 
Dendrocalamus latiflorus 0.500 0.085 0.534 0.189 0.009 0.000 0.000 
Ecdeiocolea monostachya 0.521 0.086 0.582 0.184 0.957 0.263 0.000 
Elaies guineensis 0.487 0.071 0.503 0.155 0.762 0.118 0.000 
Elegia fenestrata 0.476 0.060 0.489 0.130 0.412 0.008 0.000 
Flagellaria indica 0.491 0.071 0.513 0.155 0.977 0.151 0.000 
Hosta venusta 0.472 0.060 0.481 0.142 0.760 0.012 0.000 
Joinvillea ascendens 0.502 0.080 0.539 0.170 0.955 0.676 0.000 
Juncus effusus 0.448 0.060 0.459 0.115 0.776 0.106 0.000 
Juncus inflexus 0.455 0.065 0.475 0.131 0.936 0.110 0.000 
Lachnocaulon anceps 0.518 0.083 0.572 0.179 0.045 0.000 0.000 
Lepidosperma gibsonii 0.471 0.050 0.484 0.096 0.667 0.011 0.000 
Mapania palustris 0.471 0.049 0.486 0.099 0.232 0.000 0.000 
Mayaca fluviatilis 0.498 0.069 0.538 0.146 0.300 0.018 0.000 
Musa acuminata 0.517 0.079 0.577 0.171 0.861 0.658 0.000 
Neoregalia carolinae 0.511 0.085 0.562 0.177 0.795 0.183 0.000 
Oryza sativa 0.542 0.096 0.618 0.200 0.000 0.000 0.000 
Phoenix dactylifera 0.490 0.062 0.515 0.139 1.000 0.994 0.000 
Sorghum bicolor 0.553 0.093 0.642 0.194 0.002 0.000 0.000 
Stegolepis ferruginea 0.497 0.081 0.533 0.164 0.193 0.004 0.000 
Streptochaeta angustifolia 0.506 0.083 0.552 0.183 0.830 0.113 0.000 
Typha angustifolia 0.469 0.064 0.467 0.143 0.744 0.268 0.039 
Typha latifolia 0.479 0.068 0.494 0.147 0.908 0.179 0.000 
Vitis vinifera 0.462 0.038 0.456 0.085 0.985 0.891 0.000 
Xyris jupicai 0.520 0.080 0.584 0.167 0.948 0.521 0.000 
Yucca filamentosa 0.482 0.067 0.502 0.150 0.452 0.008 0.000 
Zingiber officinale 0.468 0.072 0.470 0.156 0.426 0.056 0.229 

 
Table 1. Statistical tests for total GC and GC3 composition across 13,798 orthogroups 
for all taxa sampled. 
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Figure 2. Heatmaps depicting general trends in gene GC composition across all sampled taxa. 
A) Distribution of total GC content for all genes across all taxa. The varied GC composition of 
monocots is highlighted by the differences between low GC species (i.e. Juncus) and high GC 
species (i.e. Aphelia or grasses). Histogram depicts the GC distribution of Sorghum bicolor 
demonstrating the heatmap information in a vertical format. B) Distribution of GC content across 
genes for all orthogroups and species sampled. A 5’ bias for increased GC percentage is seen. 
 
 
 

Species Low Mean High Mean 
Aphelia sp. 0.472 0.633 
Aristida stricta 0.460 0.651 
Brachypodium distachyon 0.500 0.659 
Dendrocalamus latiflorus 0.460 0.632 
Lachnocaulon anceps 0.466 0.616 
Oryza sativa 0.483 0.661 
Sorghum bicolor 0.491 0.659 

 
Table 2. Kmeans clustering of taxa exhibiting bimodal total GC composition distribution. 
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Figure 3. Distributions for percent GC across genes identified to “High GC” (red) or “Low GC” 
(blue) orthogroups for A) all taxa, B) Juncus effusus, and C) Brachypodium distachyon. A) T-test 
for distributions of high and low GC orthogroups across all sampled taxa suggests the two sets 
are distinct (p-value = 0.00). B) The distributions for Juncus effusus demonstrate high overlap of 
high and low GC orthogroups. T-test of these data suggests that they are distinct sets (p-value 
= 0.00). Juncus effusus transcripts exhibit the lowest overall GC composition across all sampled 
taxa and transcripts assigned to otherwise “High GC” composition orthogroups is strikingly lower 
than the overall distribution of these orthogroups. C) The distributions for Brachypodium 
distrachyon exhibit almost non-overlapping GC values for high and low GC orthogroups. This 
difference is supported by a t-test (p-value = 0.00).  Brachypodium distachyon represents the 
highest GC percentage of all taxa sampled. 
 
 

Paralog 
Source Event 

High 
GC 

Low 
GC Mixed Chi Sq. p-value 

Synteny Rho Retained Duplicate 35 279 86 80.6502 < 0.00001 
Synteny Rho Duplicate Lost 3627 6491 2509 

  Synteny Sigma Retained Duplicate 0 24 4 14.4838 0.000716 
Synteny Sigma Duplicate Lost 3662 6746 2591 

  Synteny Tau Retained Duplicate 5 53 20 18.2902 0.000107 
Synteny Tau Duplicate Lost 3657 6717 2575 

  Gene Trees Rho Retained Duplicate 51 385 133 109.3626 < 0.00001 
Gene Trees Rho Duplicate Lost 3611 6385 2462 

  Gene Trees Sigma Retained Duplicate 15 163 48 55.9048 < 0.00001 
Gene Trees Sigma Duplicate Lost 3647 6607 2547 

  Gene Trees Tau Retained Duplicate 75 235 95 19.256 0.000066 
Gene Trees Tau Duplicate Lost 3587 6535 2500 

   
Table 3. Counts of retained and lost paralogs in GC classed orthogroups for sorghum 
and rice with Chi-squared test results. 
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