Workplace Deviance and Recession

Aniruddha Bagchi
Kennesaw State University, abagchi@kennesaw.edu

Siddhartha Bandyopadhyay
University of Birmingham

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Business Law, Public Responsibility, and Ethics Commons

Recommended Citation

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.
Kennesaw State University

From the SelectedWorks of Aniruddha Bagchi

June 8, 2012

Workplace Deviance and Recession

Aniruddha Bagchi, Kennesaw State University

Available at: http://works.bepress.com/a_bagchi/11/
Workplace Deviance and Recession

Aniruddha Bagchi, Kennesaw State University, GA, USA

Siddhartha Bandyopadhyay, University of Birmingham, UK
Motivation

- What is the impact of a depressed job market on deviant behavior in the workplace?
 - Deviant behavior can include any instance of workplace indiscipline such as shirking, stealing, sabotage etc.
Motivation

- Suppose we compare two scenarios. In the first one, everyone anticipates a benign recession (if at all). In the second one, everyone expects a severe recession (if at all).
 - Under what scenario would deviant behavior in the workplace (on-the-job crime) be more?
- What is the impact of optimism about the future on deviant behavior?
The relationship between the severity of a recession and deviant behavior depends on two factors:

- Additional probability of being employed in the future of a worker who chooses not to commit a crime.
- The additional utility that a person gets from being a deviant, conditional on being employed in future.

Therefore the incentive to commit crime is non-monotonically related with the severity of an anticipated recession.
We also find that an increase in optimism about the future unambiguously increases deviant behavior.
Model

- Two periods- 1 and 2.
- Two possible states of the economy- H and L.
- Given state s in period 1, the probability of state s' in period 2 is $\gamma_{ss'}$.
Everyone is employed during a boom while only a fraction of workers are employed during a recession.

\[e_H = 1 \quad \text{and} \quad e_L < 1 \]

A person derives a private benefit \(B \) from an act of crime.

\[B \sim [0, \bar{B}] \quad \text{with density function} \; g(\cdot) \]
Model

- Chance of being caught: $p < 1$.

- Therefore, a bad record implies that the person committed a crime in the past. However, a good record implies that the person is either innocent or was lucky in the past.
Punishment: A fine f and the possibility of being fired from the job (that depends on the state of the economy in future).

Employers’ preference: (i) Experienced worker with a good record, (ii) inexperienced worker, and (iii) experienced worker with a bad record.
Period 2

Does not commit crime

Second offence

First offence

\[B_{2}^{**} \equiv pf \]

\[B_{2}^{*} \equiv pf + \tau \]

\[B \]
Plan of the talk

- The rest of the talk considers the case of a boom in the first period.
- The paper considers the case of a boom and a recession in period 1 separately.
Period 1

- Benefit from committing crime in period 1:
 - Private benefit from crime
 - No set up cost of crime in future.

- Cost of committing crime in period 1:
 - Fine (if caught).
 - Lower probability of employment in future.
Period 1

- \tilde{B}: Type of the marginal criminal.

- $\lambda(\tilde{B})$: Proportion of workers employed in period 1 with a bad record (at the beginning of period 2).

\[
\lambda(\tilde{B}) = p \left[1 - G(\tilde{B}) \right]
\]
What happens when a boom is followed by a recession?

Regime 3
Good: All employed
No record: Does not exist
Bad: Some employed

Regime 1
Good: Some employed
No record: Does not exist
Bad: None employed

$1 - \lambda(\tilde{B})$

e_L

\tilde{B}
Probability of being employed in period 2 (conditional on a boom in period 1)

- \(q(A_1, s_1) \): Probability of being employed in period 2.

\[
q(I, H) \\
q(C, H) \\
1 - \gamma H P
\]
In period 1, the following condition must hold in equilibrium:

\[\bar{B} = pf + \tau + \theta_H(\bar{B}) \]

where \(\theta_H(\bar{B}) \) is the dynamic deterrence effect.
Dynamic Deterrence

\[\theta_H(\widetilde{B}) = \left[q(I, H) - q(C, H) \right] U_2(A_1 = I) \]
\[-q(C, H)\left[U_2(A_1 = C) - U_2(A_1 = I) \right] \]

where \(U_2(A_1 = I) \) is the payoff of a person in period 2, given that the person is employed in period 2 and did not commit a crime in period 1.
Impact of a decrease in the severity of a recession

- Suppose labor demand during a recession goes up (that is, e_L goes up).
- Such a change will impact dynamic deterrence by changing

$$\left[q(I,H) - q(C,H) \right]$$

and

$q(C,H)$.

Case 1: Equilibrium is in Regime 1 (before and after the change)

- In Regime 1, only a fraction of the workers with a good record are employed if there is a recession in period 2.

- An increase in e_L leads to an
 - increase in $[q(I,H) - q(C,H)]$, and an
 - increase in $q(C,H)$ as well.
Case 1: Equilibrium is in Regime 1 (before and after the change)

- The former decreases the incentive to commit crime in period 1, while the latter increases the incentive to commit crime.
- Hence, the net effect on the crime rate is ambiguous.
Case 2: Equilibrium is in Regime 3 (before and after the change)

- In Regime 3, during a recession in period 2, all of the workers with a good record are employed, and a fraction of the workers with a bad record are employed as well.
- An increase in e_L leads to a
 - decrease in $[q(I,H) - q(C,H)]$, and an
 - increase in $q(C,H)$.

[Equation]

$e_L \leftarrow q(I,H) - q(C,H) + q(C,H)$
Case 2: Equilibrium is in Regime 3 (before and after the change)

- Both of these increases the incentive to commit a crime in period 1.
- Hence, crime rate increases.
Case 3: Equilibrium shifts from Regime 1 to Regime 3

- An increase in e_L has an ambiguous effect on $[q(I,H) - q(C,H)]$, but increases $q(C,H)$.
- Hence, the net effect on the crime rate is ambiguous.
Impact of an increase in optimism

- Suppose there is an increase in γ_{HH}.
- This unambiguously increases the crime rate.
Concluding Remarks

- If the recession becomes less severe, then the crime rate increases unambiguously in only one of three possible cases.
- An increase in optimism increases the crime rate unambiguously.